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Resonant Fermi Gases with a Large Effective Range
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We calculate the equation of state of a Fermi gas with resonant interactions when the effective range is
appreciable. Using an effective field theory for a large scattering length and large effective range, we show
how calculations in this regime become tractable. Our results are model independent, and as an
application, we study the neutron matter equation of state at low densities of astrophysical interest
0:002 fm�3 < �< 0:02 fm�3, for which the interparticle separation is comparable to the effective range.
We compare our simple results with those of conventional many-body calculations.
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FIG. 1 (color online). Hartree-Fock results for the energy per
particle of neutron matter calculated from Vlow k for different
cutoffs.
The properties of dilute Fermi gases when all two-body
scattering lengths as are large compared to the interparticle
separation rs and the range of the interaction R is small
compared with rs are universal, in the sense that properties
do not depend on details of the interparticle interaction [1].
This is because the only dimensionful scale is the Fermi
momentum kF, and the corresponding energy scale is the
Fermi energy "F � k2

F=�2m�, m being the fermion mass.
Consequently, all macroscopic observables are given by
appropriate powers of kF or "F multiplied by universal
factors. For instance, for two spin states with equal pop-
ulations the energy per particle E=N of cold gases of, e.g.,
6Li, 40K atoms or neutrons under these conditions is given
by

E
N
� �

�
E
N

�
free
� �

3k2
F

10m
; (1)

where the universal factor � is a number.
Resonant, dilute Fermi gases were realized for the first

time by O’Hara et al. in 2002 [2]. The factor � has been
determined experimentally by a number of methods [2–5]
in atomic gases where the interaction may be tuned by
controlling the magnetic field. The extraction of the equa-
tion of state leads to � � 0:51� 0:04 [3], � � 0:7 [4], and
� � 0:27�0:12

�0:09 [5], for temperatures in units of the Fermi
temperature T=TF � 0:05 (except for T=TF � 0:6 in [4]).
To date, the most reliable theoretical results are from T �
0, fixed-node Green’s function Monte Carlo simulations,
� � 0:44� 0:01 [6] and � � 0:42� 0:01 [7].

The purpose of this Letter is to consider the neutron gas
as an example of a Fermi system with a large scattering
length. For neutrons, the scattering length is unnaturally
large and the currently accepted value is ann � �18:5�
0:3 fm (for a recent review on the experimental situation,
see [8]). This is to be compared with the range of nuclear
interactions, which is given by the mass of the lightest
exchange particle, the pion, and thus R� 1=m� � 1:4 fm.
The effective range re is expected to be approximately
charge independent, and therefore we take the neutron-
05=95(16)=160401(4)$23.00 16040
neutron effective range to be rnn � 2:7 fm, the same as
the neutron-proton one [9]. Consequently, the neutron
effective range is also significant, with rem� � 2.

For neutrons, the validity of the universal equation of
state applies to densities with kFre 	 1. This restricts
neutron densities to � � k3

F=�3�
2�< 10�4 fm�3, which

is just below neutron drip density �nd � 2:3

10�4 fm�3 � 10�3�0 at which neutrons become unbound.
Here �0 � 0:16 fm�3 is the saturation density of symmet-
ric nuclear matter. Therefore, it is important to generalize
the equation of state to resonant Fermi gases with an
appreciable effective range. In the regime kFre � 1, the
energy per particle can be expressed as in Eq. (1) but with a
system-specific factor ��kFre�,

E
N
� ��kFre�

3k2
F

10m
: (2)

This is the case for neutron matter at subnuclear densities
� < �0=10. For the extension Eq. (2) to be valid, the
contributions to the energy from higher partial waves and
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many-body forces must be negligible. This ensures that
neutron densities with kFre � 1 do not probe further details
of nuclear forces. In addition, the effective range expansion
truncated at re, k cot��k� � �1=as � rek2=2, must de-
scribe the phase shifts ��k� for S-wave scattering up to
relative momenta k� kF. The extension of the universal
energy to kFre � 1 is also valid for trapped Fermi gases
where both the scattering length and the effective range are
tuned to large values. In this Letter, we calculate ��kFre�
for resonant Fermi gases with kFre * 1 and explain how
this regime becomes theoretically tractable.

For neutron matter, the non-S-wave contributions to the
energy per particle can be estimated from the Hartree-Fock
results shown in Fig. 1. The Hartree-Fock calculations are
based on the model-independent two-nucleon interaction
Vlow k for different values of the momentum cutoff �. The
evolution of Vlow k with the cutoff follows a renormaliza-
tion group (RG) equation that guarantees that nucleon-
nucleon phase shifts are cutoff independent. We have
previously found that the evolution of all large-cutoff
nuclear interactions to � & 2:1 fm�1 leads to the same
low-momentum interaction Vlow k [10]. Varying the cutoff
gives an approximate measure of higher-order contribu-
tions beyond Hartree-Fock and the effects of omitted
many-body forces, since both are needed to obtain
cutoff-independent results. We find in Fig. 1 that the low-
density equation of state is cutoff independent for kF &

1:0 fm�1, with negligible l � 1 contributions for kF &

0:8 fm�1. In addition, the effective range expansion de-
scribes the 1S0 phase shifts well up to relative momenta
k < 1:0 fm�1, with a deviation of �0:4�, 0.2�, and 2.1�

from the empirical phase shifts 57.7�, 48.6�, and 39.5� for
k � 0:4, 0.6, and 0:8 fm�1, respectively. Consequently, the
equation of state of neutron matter is given by Eq. (2) for
kFre & 2.

We calculate the equation of state Eq. (2) using an
effective field theory (EFT) for large scattering length
and large effective range. EFT offers a systematic approach
to interactions at low energies, and therefore our results are
model independent [11]. Under the conditions of interest,
both the scattering length and effective range are low-
momentum scales 1=as � 1=re �Q. The corresponding
EFT is realized by introducing a difermion field d [12]
(for a review, see Ref. [13]) with the lowest-order
Lagrangian density given by (in units @ � m � 1)

L �  y
�
i@0 �

r2

2

�
 � dy

�
i@0 �

r2

4
��

�
d

� g�dy  � d y y�: (3)

Here  denotes the fermion field, and � and g are low-
energy constants which describe the propagation of the
difermion field and its coupling to two fermions, respec-
tively. We also note that i@0 �r

2=4 is the operator for the
two-body energy corrected for the center-of-mass motion.
The EFT Lagrangian Eq. (3) was introduced for nucleon-
16040
nucleon scattering in Ref. [12] following the work of
Weinberg [14]. In the difermion EFT, the T matrix for
two-body scattering depends only on the energy E of the
interacting particles in the center-of-mass system,

T�E� �
g2

�� E� g2I0�E� i��
; (4)

with I0�E� �
R

�
0 d

3p=�2��3�E� p2��1. This corresponds
to summing diagrams where the difermion propagator
(represented as a double line) is dressed by fermion loops,

I0�E� denotes the loop integral regulated by a momentum
cutoff � and the on-shell T matrix is given by 4�T�1�E �
k2� � 1=as � rek2=2� ik, which can equivalently be ob-
tained from an energy-dependent potential,

V�E� �
g2

�� E
; (6)

which follows after integrating out the difermion field.
Matching the lowest-order low-energy constants � and g
to the effective range expansion yields

�

g2 �
1

4�as
�

�

2�2 and
1

g2 �
re

8�
�

1

2�2�
: (7)

Consequently, for systems with large scattering length and
large effective range, the potential V�E� scales at low
energies E�Q2 as V�E� � �Q���Q2=���1. The cut-
off generates higher-order terms �k4=�3 in T�1�E � k2�,
which are suppressed for k=�	 1. Therefore, we con-
sider the lowest-order EFT with large cutoffs. This is not
required for Vlow k, since the RG generates all higher-order
contact interactions necessary to maintain cutoff-
independent two-body observables. If one rescales the
difermion field by d! gd, the interaction terms become
coupling independent and the kinetic term acquires a factor
1=g2. For large cutoffs, 1=g2 � re, and therefore the difer-
mion field is an auxiliary field for positive effective range,
even if there is a two-body bound state with as > 0.
Integrating out the d field gives the standard contact inter-
action EFT. For negative effective range the difermion
kinetic term has the normal sign and the Lagrangian
Eq. (3) is the atom-molecule model. The great advantage
of the present formulation is that it enables one to study
systems with either positive or negative re.

Next, we study the scaling of diagrammatic contribu-
tions to the energy. Particle-particle loops are restricted
only by the cutoff, and therefore these scale as �� for
large cutoffs. By contrast, particle-hole and hole-hole in-
termediate states scale with the low-momentum scale �Q.
Particle-hole loops, for instance, scale with the density of
states �kF. Since the lowest-order interaction scales as
1-2
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FIG. 2 (color online). Result for �HF�kFre� (solid line) which
describes the equation of state of resonant Fermi gases with large
effective range kFre * 1. The dashed lines provide an error
estimate for �HF as discussed in the text.
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V�E� � �Q���Q2=���1, cutoff independence for
large cutoffs minimally requires summing particle-particle
ladders with Pauli blocking, such that the ��1 scaling of
the potential cancels with each loop �� [15]. Neglecting
terms which vanish for large cutoffs, we find for Tmed, the
on-shell in-medium T matrix,

Tmed�E � k2;P�

� 4�
�

1

as
�
rek2

2
�
kF �

P
2

�
�
k
�

log
�kF �
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2 � k
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P
2 � k

�

�
k2 � P2

4 � k
2
F

�P
log

�
�kF �

P
2�

2 � k2

k2
F �

P2

4 � k
2

��
�1
; (8)

where P denotes the particle-pair momentum and we have

neglected the imaginary part, as the latter vanishes for k <����������������������
k2

F � P
2=4

q
and therefore does not contribute to the en-

ergy. The resulting in-medium T matrix can be viewed as
an effective interaction and scales as Tmed�E � k2;P� �
Q�1, independent of the cutoff. In addition to the scattering
length and effective range terms, the inverse effective
interaction acquires a density-dependent contribution
��kF � P=2�=� and two logarithmic terms. The first loga-
rithmic term includes the BCS singularity for P � 0 and
k � kF. The resulting contribution to the energy is inte-
grable and generally small. For neutron matter, realistic
calculations of the superfluid pairing gap including polar-
ization effects give �="F � 0:1 for densities with kFre � 1
[16]. We therefore expect corrections to the energy per
particle �sf�kFre� � �5=8��="F�

2 � �0:01 due to pairing
in this regime. The second logarithmic term in Eq. (8) is
regular, and for P � 0 it simplifies to �kF=�.

For large effective range, interactions are weaker at
higher momenta and the effect on the in-medium T matrix
can be understood qualitatively by inserting average values
for the momenta k2 � 3=10k2

F and P2 � 6=5k2
F into

Eq. (8). With this qualitative estimate, the average effective
interaction for resonant Fermi gases is given by

Tmed � �
4�

U0kF �
3rek2

F

20

� �
4�
U0kF

1

1� 0:27kFre
; (9)

withU0 � 0:56. In the universal regime with kFre 	 1, the
average effective interaction is given by Tmed �
�4�=�U0kF�. The remaining contributions to the energy
are of particle-hole or hole-hole nature, and scale as Q�
kF. In this EFT it is thus necessary to sum all diagrams, as
the effects of each additional vertex �k�1

F combined with
the additional loop �kF are of order one.

For Fermi gases with large effective range, the loop
scaling is unchanged, but additional Tmed vertices are
now suppressed by �1� 0:27kFre�

�1. This implies that
corrections to the Hartree-Fock equation of state with
Tmed as effective interaction come with powers of �1�
0:27kFre�

�1 relative to the universal case. In perturbation
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theory, particle-particle-irreducible contributions to the
energy enter in third order. With Tmed � 4�amed, we esti-
mate the leading nonladder corrections to the ��kFre�
obtained from Tmed at the Hartree-Fock level as �� �
0:077U0�1� 0:27kFre��

�3 [17]. This provides only a
qualitative estimate, since we evaluated the in-medium T
matrix for average particle configurations.

To a good approximation, the equation of state of reso-
nant Fermi gases with kFre * 1 can therefore be calculated
from Tmed at the Hartree-Fock level,

�HF�kFre� � 1�
5

2�2k5
F

Z 2kF

0
P2dP



Z �����������������

k2
F��P

2=4�
p

0
k2dkTmed�k2;P�


min
�

1;
k2

F � k
2 � P2

4

kP

�
; (10)

with 1=as � 0 in Eq. (8). Based on the arguments given
above, we expect corrections to � beyond Hartree-Fock of
order �� � 0:22� 0:03 and �sf � �0:01 due to pairing
for densities with kFre � 1� 5. Our results for �HF�kFre�
are shown in Fig. 2 with the theoretical error estimate. It is
intriguing that we find �HF�1� � 0:47, which is close to the
universal factor � � 0:44� 0:01 [6]. This implies a can-
cellation of higher-order contributions for kFre 	 1.

For kFre � 1, the effective interaction is of the order
Tmed ���rek2

F�
�1 and interaction effects disappear for

infinite effective range. In the latter regime, � �
1� C=�kFre�, with a coefficient C< 0 of order one.
Consequently, �! 1 only for very large effective ranges.
We find �HF�10� � 0:79 and �HF�100� � 0:96. If the ef-
fective range is negative, the average interaction in the
medium is greater than for re � 0, and higher-order terms
are only reduced for very large jkFrej � 1.

Finally, we take into account a large but finite scattering
length, and present in Fig. 3 results for the equation of state
1-3
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FIG. 3 (color online). Comparison of the energy per particle
for neutron matter calculated from Eq. (10) for as � �18:5 fm
and re � 2:7 fm (solid line) to Fermi hypernetted-chain (tri-
angles) [18] and Brueckner results (circles) [19]. We also
show the Vlow k Hartree-Fock results of Fig. 1. The dashed lines
provide an error estimate for �HF.
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of neutron matter in the regime kFre � 1. This is straight-
forward by including the 1=as term in Eq. (8). Our results
are model independent and constrain neutron matter at
subnuclear densities 0:002 fm�3 < �< 0:02 fm�3, which
is of relevance to the physics of neutron stars and super-
novae. We also compare our neutron matter results to
many-body calculations using Fermi hypernetted-chain
techniques [18] or Brueckner theory [19]. As can be seen
from Fig. 3, all microscopic results lie within our theoreti-
cal error estimates.

In summary, we have calculated the equation of state of
resonant Fermi gases with large effective range kFre * 1 in
the difermion EFT, with particular attention to neutron
matter at subnuclear densities. A large magnitude of the
effective range for an atomic gas can also be achieved by
working with a narrow Feshbach resonance. In the lowest-
order EFT, cutoff independence minimally requires the
resummation of particle-particle ladders [13], which leads
to an effective interaction that becomes weak for all kFre *

1. The kFre dependence was used to show how resonant
Fermi gases with large effective range, such as low-density
neutron matter, are theoretically tractable and to estimate
the error of our results. Neutron matter equations of state
obtained using conventional many-body approaches are
consistent with our model-independent difermion EFT
results within these errors. For kFre � 1, the energy is
found to be close to the universal regime.
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