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Zero-Magnetic-Field Hall Effect in Broken-Mirror-Symmetry Conductors under Illumination
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A novel effect is predicted for conductors with a broken mirror symmetry [e.g., polar metals and
asymmetrical quantum well (QW) structures]: if such a conductor is under the direct current J�E�d�, the
circular polarized infrared radiation should induce an additional transverse current JH �E�d� � c, where
E�d� is the driving electric field and c is a vector directed either along the polar axis or perpendicular to a
QW. The sign of the current JH can be reversed by switching the helicity of the light from right to left-
handed. Thus the phenomenon is, in fact, something like the Hall effect in which light acts as an external
magnetic field.
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It is believed that the invariance under space reflections
imposes heavy constraints on the possible behavior of
physical systems. The majority of conducting crystals
have a center of symmetry. However, there are also quite
a number of bulk three-dimensional (3D) and quasi-two-
dimensional (2D) semiconductors and metals with a bro-
ken mirror symmetry. These are compounds whose sym-
metry group includes a polar axis [e.g., Mo3AlC
(symmetry P4132) and Mo3P (symmetry I �4) [1]], some
narrow-gap semiconductor heterostructures with violated
‘‘up-down’’ symmetry (e.g., InxGa1�xAs=InyAl1�yAs [2]),
and 2D bands at the surfaces of some metals (Au [3], W,
and Mo [4]). Although there are no parity constraints in
these conductors, it is not at all obvious whether this fact
can have an effect on their electric properties. In this Letter
we try to draw attention to a new feature in electrodynam-
ics which distinguishes the mirror-odd conductors from
usual, center-symmetric ones.

The topic is also relevant to spintronics [5], because just
the coupling between spin and orbital degrees of freedom
is the main factor through which the mirror symmetry
violation reveals itself in dynamics of electrons in such
compounds. In fact, the violation of mirror symmetry gives
rise to the additional term

Hso �
�
@
�p� c� � ~� (1)

in the Hamiltonian of the carriers [6], where p, ~�, and c
are, respectively, the electron momentum, the Pauli ma-
trices, and the unit vector directed either along the polar
axis or perpendicular to the asymmetric 2D structure. This
spin-orbit (SO) coupling has recently become the focus of
many theoretical and experimental studies [7]. The present
Letter sheds light on a quite new aspect of the coupling: a
possibility of controlling the electric current with the aid of
light.

The possibility of the effect can be understood in a rather
intuitive way. The term (1) can be viewed as the Zeeman
energy in a fictitious magnetic field Bf � ��p� c�=�Bg
which influences the electron kinetic in two ways. First, it
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stochastically changes its direction by scattering on impu-
rities resulting in a finite time of the spin relaxation �so ’
���pF�=@2��2, where pF is the Fermi momentum and � is
the elastic lifetime due to impurities [8]. Second, if under
the action of an electric field E, the electric current J�E
passes through the system (so that the ensemble-averaged
momentum hpi � J), the average field hBfi induces a spin
polarization of the carriers proportional to c� E [9]. This
magnetoelectric effect (MEE) means that under the action
of the electric field E a correction to the electron distribu-
tion function arises which is proportional to ~� � �c�E�. In
the case when the field is the radiation field (that can be
presented as E�l�! ei!t �E�l�	! e�i!t) one can assume that in
the second order perturbation theory, the field may induce a
correction to the distribution function of the form 
 ~� � �c�
E�l�! ��
 ~� � �c� E�l�	! ��, which is simply i� ~� � c��c �E�l�! �
E�l�	! �. This correction means that the illumination of the
system by circular polarized light induces a permanent spin
magnetization M� ic�c � ~�� ~�	�, where ~� is the polar-
ization vector. In other words, this is the inverse Faraday
effect (IFE) [10]. Thus the effect of circular polarized light
on electron spins of the mirror-odd conductor is very much
like the effect of an external magnetic field. By pursuing
the analogy further, a question arises: is the effect of the
light on the electric current the same as the effect of an
external magnetic field. Indeed, since an external magnetic
field applied to a system with SO coupling can induce the
Hall effect not only via the Lorentz force, but also through
the Zeeman interaction with the electron spins [11], one
could anticipate that if a mirror-odd crystal is under the
direct current J� E�d�, the circular polarized light illumi-
nation will induce the pseudo-Hall effect; i.e., the occur-
rence of the transverse current JH �M�E�d� in the
absence of any external magnetic field.

Here it will be shown that in the case of a 2D electron
system and high enough light frequencies !� > 1 the total
current takes the form

J � �DE�d� � �H�c� E�d��i�c � ~�� ~�	�; (2)
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where �D � �e2=���F� is the 2D Drude conductivity, ~� is
the polarization vector of the light, �F � p2

F=m is the
Fermi energy

�H � �D

�
eE�l�! �
pF

�
2 2��
�!����F��

�
2�2 �

3

2�!��4

�
; (3)

E�l�! is the value of the electric field of the light � �
2�pF�, � � �m=pF, and units are used in which @ � c �
1. (Corrections to the diagonal part of the conductivity
tensor due to the illumination may be omitted.) Note that
the pseudo-Hall current is quite different from a direct
photocurrent induced by circular polarized radiation [12].
The former does not suppose any interband electron tran-
sitions and has a maximum at the normal light incidence,
whereas the latter involves virtual (or real) dipole-allowed
transitions between the conduction and valence bands and
vanishes under such conditions.

So let us consider a 2D system (3D systems may be
treated in the same way) with the Hamiltonian

H0 �
p̂2

2m
� ��p̂� c� � ~��

X
i

u��r�Ri�; (4)

where p̂ � �ir, r is the position of an electron and Ri are
the positions of the randomly distributed short-ranged
impurities of concentration nimp. The Hamiltonian of the
system at the presence of the external fields, which are the
driving electric field specified by the vector potential A�d�

and the field of the light specified by the vector potential
A�l�, is obtained from H0 by the substitution p̂! p̂� eA,
A � A�d� �A�l� and can be represented as H0 �Hint.
We retain in Hint only the term ev �A, where v �
i
H0�p�; r� �

p
m� ��c� ~�� is the velocity operator, be-

cause the term of the second order in A does not contribute
to the pseudo-Hall current. As seen from (2) and (3), this
current occurs as the third-order response to ev �A: it is
linear in A�d� and quadratic in A�l�. Just as in [13], we
consider A�d� to have a small but finite frequency!0. Since
the final result depends only upon the combination
i!0A�d�!0 � E�d�!0 , the constant-driving field limit is obtained
by letting !0 ! 0 at the end of the calculations.

To calculate the response, we use the method introduced
in [14] according to which, to study dynamical properties
of a many-body system, the general procedure is to calcu-
late first certain imaginary-time-ordered thermal correla-
tion function, and then to perform an analytic continuation
from the positive imaginary frequency axis to the real
frequency axis, with respect to every external frequency,
in order to obtain the corresponding physical, causal cor-
relation function. So at the starting point, the external fields
are considered as functions of discrete boson frequencies
!n � i�2nT. The current density in the uniform system is
given by the expression
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J �!n� � T
X
�l

Z d2p

�2��2
Trf�evG��l; �l �!n; p�g; (5)

where �l � i�T�2l� 1� and the exact electron Green
function G��l; �l �!n; p� includes, in addition to the ex-
ternal electromagnetic fields, also the impurity self-
energies. By expanding G��l; �l �!n; p� in powers of
the external fields and omitting temporarily the effects
of impurities, one gets T3P

!n1
;!n2

;!n3
T�1�!n1

�!n2
�!n3

;!n

G��l�Hint�!n1
� G��l�!n1

�Hint�!n2
� G��l�!n1

�!n2
��

Hint�!n3
� G��l �!n1

�!n2
�!n3

�, where one-frequency
G functions are the free Green functions and all variables
except for frequencies are suppressed for simplicity. So the
expression for the current becomes three fermion loops.
Each loop threads through four frequency bearing vertices
which include one response velocity vertex and three cause
vertices. One of the cause vertices represents the interac-
tion with the driving field, ev �A�d�, and will be called the
driving vertex. The other two cause vertices represent the
interaction with the light, ev �A�l�, and will be called the
light vertices. The loops are distinguished by relative posi-
tions of the driving and light vertices. Each term of the
summation over �l in (5) can be regarded as the residue of
an integral around the point z � �l so that one can trans-
form T

P
�l ! �4�i�

�1 H
C dz tanh�z=2T� followed by the

deformation of the contour integral into the straight line
integrals along z � �� i0�, z � ��!n1

� i0�; . . . ,
where � 2 ��1;1� is the real integral variable.
Referring the reader to [14] for details of the analytical
continuation of these integrals, we give the final result.
Every fermion loop becomes five diagrams: one retarded
diagram that involved the product of only retarded Green
functions GR��� �Hint�!1�G

R���!1� . . . multiplied by
tanh���!0

2T �, one advanced diagram that involved the prod-
uct of only advanced Green function GA���Hint�!1� �
GA���!1� . . . multiplied by � tanh� �2T�, and three dia-
grams which will be called kinetic. The latter involve the
products of retarded and advanced Green functions, so that
the first Green function GR��� is retarded, the last one
GA���!1 �!2 �!3� is advanced, and a change from
a retarded to an advanced Green function occurs in any, but
only one, cause vertex (the so-called ‘‘anomalous’’ vertex).
The product has to be multiplied by the function (which
can be considered as associated with this anomalous ver-
tex) F��0;�� � 
tanh �

0

2T � tanh�
0��
2T �, where �0 and �0 ��

are the electron frequencies entering and leaving the ver-
tex. All frequencies of the ‘‘continued’’ diagrams
(!0; !1; . . . ) are real, the discrete summation T

P
!ni

is re-

placed by a continuous integral �2���1
R
d!i, the

Kronecker delta T�1�!n;!n0 by the Dirac delta �2����!�
!0�, and the integration �4�i��1

R
1
�1 d� is finally per-

formed. For the following analysis it is convenient to
represent the current as Ji � Qij�!0�A

�d�
j �!0� and discuss

diagrams for Qij�!0�.
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The retarded and advanced diagrams do not contribute
to the current. The kinetic diagrams with allowance for
the effect of impurity scattering are shown in Fig. 1. The
vertex with a wavy line represents ev �A�l��! (two wavy
lines have opposite frequencies). The free Green function
(single line) has the form GR�A�

�	 �
;p� �
P
�������

�	�p� �

GR�A�
� �
; p�, GR�A�

� �
; p� � 

 � E��p� �
i

2��
�1. Here

E��p� �
p2

2m� �p are two branches of the energy spec-
trum of H0�p� of positive and negative helicities (the
projection of a spin on the p� c direction) with the
Fermi momenta p�  pF�1� ��, pF � �2m�F�1=2 and
the densities of states at the Fermi level N�  �1� ���
m
2� . ���p� � 1

2 
1� �p̂� c� � ~�� are the corresponding
projection operators. The SO constant � enters into a
diagram through the parameters � and �. The parameter
� can be of the order of unity in real systems. Therefore, it
is regarded as small only to simplify the calculations, so
that all the necessary powers of � should be included. The
parameter � responsible for the difference between the
branches is small �=� � �4=�F�� � 1. Therefore, all
powers of � in excess of the first can be ignored. In other
respects, the evaluation of diagrams can be performed by
standard methods [13].

The diagrams of Fig. 1 fall into two groups. In the first
diagrams shown in Fig. 1(a), the driving vertex is anoma-
lous. In the second type of diagrams depicted in Figs. 1(b)
and 1(c), one of the light vertices is anomalous. Note that
the diagrams presented in Fig. 1 are similar to those for the
nonlinear current fluctuations considered in the work [15],
except for two points. (i) Because of the high frequency of
light !�� 1, the impurity corrections to the single light
vertex are neglected. However, just as in [15], the ladder of
impurity lines embracing both light vertices are taken into
(c)
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FIG. 1. The diagrams for the changes of the conductivity
tensor due to the illumination. The dotted areas denote the
impurity-ladder insertions. Note that any of the light vertices
of diagrams (b) and (c) can be anomalous.
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account because the total frequency of the vertices equals
zero. (ii) The impurity ladders relevant to the antisymmet-
ric part of Qij do not have poles at a real frequency due to
the finite spin relaxation time. For this reason, the expan-
sion of�H in powers of E�l�! does not diverge because of the
absence of energy relaxation in the model under consid-
eration. It should also be noted that the symmetric at the
i! j part of Qij does not contain the SO coupling
within the �-linear approximation. Therefore, all results
of the work [15] are valid for the Qsim

ij .
The remarkable result of the developed theory is a

property of the impurity-renormalized velocity vertex
shown in Fig. 2. The bar velocity operator v�p�, besides
the usual scalar part, also has a spin component. A straight-
forward calculation reveals that at a small difference be-
tween frequencies of electron lines entering and leaving
the vertex, (!0 � ��1�2), it has the form

V �p; !0� 
p
m
� ��c� ��

2i!0�

�2 ; (6)

and hence loses its spin component in the static limit
!0 ! 0. It is important that this zero-frequency property
is not a result of assumed isotropy of impurity scattering.
This can also be proved at s-p approximation for the
scattering amplitude and apparently is always true.

The tensor Qij�!0� of any normal conductor has to be a
linear function of !0 at !0 ! 0 [13]. Every diagram of
Fig. 1(a) obeys this law because it includes the func-
tion F��;!0� at the driving vertex and F��;!0� �!0 as
!0 ! 0; therefore one may set !0 equal to zero in the
remaining parts of the diagram. Since both the response
and driving vertices of the diagram must be renormalized
by impurities, they lose their spin parts at !0 � 0 because
of (6). Thus the !0-linear part of every first class diagram
is symmetric under the permutation i! j and hence
cannot contribute to the Hall conductivity. To show that
the total contribution of the second type of diagrams to the
antisymmetric part of Qij disappears at !0 ! 0, one
should set !0 equal to zero and apply the Ward-like
identity

@GR�A���;p�=@pj � GR�A���;p�vj�p�GR�A���;p�; (7)

that follows from the operator representation of the Green
function GR�A�

�	 ��;p� � 
��H0�p� � i
2��
�1
�	 and the rela-

tion v�p� � @H0�p�=@p, to the driving vertex of these
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FIG. 2. The diagrams for the impurity-dressed velocity vertex.

2-3



- δ
ij A

R
ε,p

ε,p
 

ε,p

ε,p

ε,p
RA

v
j

 

p
i

R

ε,p

ε,p
A

A
v

j
p

i

R
ε,p

+ =

FIG. 3. The relation showing the cancellation of the anti-
symmetric parts of the diagrams of Fig. 1(c) at !0 ! 0.
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diagrams followed by integration by parts. In this way, one
can prove the relation shown in Fig. 3, for diagrams of
Fig. 1(c). In the same way, one can obtain an analogous
equation for the diagrams of Fig. 1(b) that shows that these
diagrams also lose their antisymmetric parts in the static
limit. The equation lim!0!0Qanti

ij �!0� � 0 allows one to
write Qanti

ij �!0� � i!0�anti
ij and consider �anti

ij as the anti-
symmetric part of the conductivity tensor. Now the trans-
verse part of the current Qanti

ij A
�d�
j takes the usual form

�anti
ij E

�d�
j . For a given second-type diagram,!0-linear terms

can be derived either from the impurity-renormalized re-
sponse vertex V�p; !0� or from other parts of the diagram.
The total contribution to the transverse current of the
!0-linear terms derived from V�p; !0� is equal to

��c� E�d��i�c � E�l�! �E�l�	! �
3e4�2��

2�p2
F�!��

5
; (8)

while the total contribution of the other !0-linear terms
equals

�c� E�d��i�c �E�l�! �E�l�	! �
2e4�2�3�

�p2
F�!��

: (9)

So we come to Eq. (3) [16]. The fact that �H � � means
that the pseudo-Hall effect takes place just due to the
difference between the energy branches E��p�. The same
is true for MEE [9], IFE [10], and apparently for any
macroscopic property of a conductor induced by the bro-
ken mirror symmetry. Thus the asymmetry between elec-
trons of opposite helicities is the main point of the kinetics
of mirror-odd conductors.

At small � and not very high frequency of the light,
the second term in Eq. (3) dominates; e.g., for the rather
dirty InxGa1�xAs=InyAl1�yAs heterostructure with @=� ’
10 meV, � � 1:4� 10�10 eV cm [2], m	 � 0:046m0,
15660
n � 6� 1011 cm�2, and for the far-infrared (FIR) (� �
10�2 cm) pulse laser of power P � 102 W focused on the
structure of dimension 1 mm2, one has 2�pF ’ 0:056 eV,
!� ’ 1, and �H=�D ’ 10�6. However, for the metal sur-
face bands, where much greater values of 2�pF were
found (0.1 eV in Au [3] and up to 0.5 eV in Mo and W
[4]), and for the infrared light (� � 10�3 cm) the second
term in (3) may appear to dominate.

Thus we have shown that the phenomenon similar to
the Hall effect can be induced in mirror-odd conductors by
the circular light illumination. The effect means that one
can control the direction of current with the aid of light.
The effect also provides the possibility for measuring the
value of � in dirty metals where other methods [2] are
inoperative.
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