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Self-Trapped Excitons in Silicon Dioxide: Mechanism and Properties
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Irradiating silica produces self-trapped excitons (STEs) that spontaneously create atomic-scale dis-
tortions on which they localize themselves. Despite enduring interest in STEs and subsequent defects in
this key technological material, the trapping mechanism and geometry remain a mystery. Our ab initio
study of STEs in �-quartz using a many-electron Green’s function approach answers both questions. The
STE comprises a broken O-Si bond with the hole localized on the defected oxygen and the electron on the
defected silicon atom in a planar sp2 conformation. The results further explain quantitatively the
measured STE spectra.
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Silicon dioxide is a crucial high technological material.
It is the central ingredient in the metal-oxide-semi-
conductor (MOS) structure governing modern electronic
devices and is used in optical fibers and precision
frequency-control oscillators. The ever-decreasing size of
electronics has pushed MOS size into the nanometer scale
where the presence of atomic-level defects affects device
reliability [1]. Defects in silica also degrade the perform-
ance of MOS-based electronics by creating long-lived
voltage shifts [2], change dispersion and attenuation in
optical fibers [3], and modify oscillator frequencies [4,5].
Many such defects are created by radiation which is prob-
lematic because SiO2-based devices are often employed in
environments subject to ionizing radiation (in satellites,
nuclear power plants, medical studies, etc.) [2,4,5].

The self-trapped exciton (STE) is one of the important
radiation-induced defects in silica. Excitons in silica self-
trap from low to at least room temperatures [6–15]. Self-
trapping occurs in an otherwise ideal structure when the
excited electron and hole spontaneously create a localized
distortion in the lattice which lowers their total energy and
thus localizes and traps them at the distortion. The process
exemplifies spontaneous symmetry breaking. The STE in
�-quartz has a triplet spin state, has a long lifetime at low
temperature (� 1 ms), causes an expansion of the crystal,
and has a dramatic Stokes shift of �6 eV with blue lumi-
nescent emission centered at 2.6–2.8 eV [6,7,10–15].
Creating STEs in silica leads directly to the formation of
two other important defects, the E0 center and the non-
bridging oxygen hole center (NBOHC) [10,15]. The E0 is
the main candidate for the defect that determines the
radiation response of MOS devices [2], and it may change
the refractive index of optical fibers [3]. Therefore, a de-
tailed theoretical understanding of the atomic-scale struc-
ture and properties of the STE will provide a step forward
in understanding the physics of subsequent defect
formation.

Previous theoretical studies of the STE in silica used
methods based on quantum chemistry and density func-
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tional theory (DFT) of both semiempirical and ab initio
varieties [16–20]. Cluster based quantum chemical meth-
ods are in principle highly accurate, but in practice, limi-
tations on cluster sizes and basis sets produce sizable finite-
size and convergence uncertainties [18]: at least three
different configurations for the STE are found, each with
its own luminescent signature [18]. DFT calculations with
periodic boundary conditions and plane-wave bases do not
suffer from these problems, but time-independent DFT has
serious problems describing excited states: unstable
trapped excitons are predicted with energies higher than
perfectly delocalized ones [18,20]. In principle, time-
dependent DFT (TDDFT) can describe excitations accu-
rately, but the commonly used TDDFT exchange-
correlation kernels (e.g., TDLDA) do not improve DFT’s
failure for the bulk [21]. New kernels are being developed
with the aim of overcoming such problems, but these
kernels are designed to reproduce the behavior of the
Green’s function methods that we utilize [22].

Here, we employ a first-principles many-electron
Green’s function method [23–25]. The method uses peri-
odic supercells and naturally includes the crystalline envi-
ronment, long-range screening, and relaxations. It also
incorporates key electronic correlations for an accurate
description of excited states and produces excellent quan-
titative agreement with experiments, as shown in the lit-
erature and below. Calculated excitation energies for
semiconductors, insulators, or molecules are typically ac-
curate to within 0.1–0.2 eV [23–25], which are sufficient
for meaningful comparisons to experiments.

In this study, the electronic ground state is described by
DFT within the local-density approximation (LDA) using
the plane-wave supercell approach with norm-conserving
pseudopotentials [26,27]. (The silicon pseudopotential has
the 3s23p13d1 configuration with rc � 2:0a0 and oxygen
2s22p4 with rc � 1:5a0; occupying the Si 3d state leads to
more a transferable pseudopotential, particularly in the d
channel.) The plane-wave cutoff is 70 Ry. We use an 18-
atom supercell of �-quartz in the shape of a rectangular
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parallelepiped. We sample the Brillouin zone on a ran-
domly shifted 2� 2� 2 k-point grid. Predicted equilib-
rium lattice constants and atomic positions are within a few
percent of experiment, typical of DFT-LDA.

Quasiparticle excitations are calculated by solving the
Dyson equation for the one-particle Green’s function
within the GW approximation to the electron self-energy
[23]. We fix the dielectric function to its RPA value as
provided by DFT while self-consistently solving the Dyson
equation within the quasiparticle approximation. We as-
sume identical DFT and GW quasiparticle wave functions.
Optically, excitations are determined by solving the Bethe-
Salpeter equation (BSE) for the two-particle Green’s func-
tion [24]. Our calculated excitation energies include dy-
namical screening [24]. All parameters are chosen to
converge energy eigenvalue differences (Kohn-Sham,
GW, or BSE) to 50 meV. We calculate excited-state ionic
forces using our recently developed approach [25]. This
allows us to find the geometrical relaxation for the excited
system and thus the Stokes shift and concomitant changes
of spectral properties.

Figure 1 compares the imaginary part of the frequency-
dependent dielectric function for �-quartz based on the
single-particle RPA-GW method (i.e., interband transi-
tions from noninteracting electrons and holes with GW
energies), solution of the BSE, and experiment. The quali-
tative failure of the interband method in describing the
absorption onset and spectral distribution of transitions
points to the overriding importance of excitonic phe-
nomena in silica. Conversely, the GW-BSE method pro-
vides excellent quantitative predictions for the positions
and amplitudes of the absorption peaks.

To describe exciton self-trapping in �-quartz, we begin
with our 18-atom supercell in the ideal crystalline geome-
try. The ions are shifted randomly by a small amount
(� 0:02 �A) to mimic inevitable thermal fluctuations that
break the ideal crystalline symmetry. For the lowest-energy
FIG. 1 (color online). Imaginary part of the frequency-
dependent macroscopic dielectric function for �-quartz. Red
squares are calculated results neglecting electron-hole interac-
tions, blue dashes are calculated including electron-hole inter-
actions, and the solid black is experimental data [32].
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triplet excited state, the excited-state ionic forces are cal-
culated, and the system is relaxed to the nearest energy
minimum on the excited-state energy surface using steep-
est descents. We find a minimum-energy structure where
one oxygen atom breaks its bond with a neighboring
silicon atom which moves into a threefold coordinated
planar geometry (detailed below). The configuration is
the STE. As a check, the entire minimization is repeated
starting with a new random initial configuration, and the
same unique final structure is found.

Figure 2 shows the calculated ground-state energy, trip-
let excited-state energy, and the exciton excitation energy
versus the length of the ruptured Si-O bond along the
relaxation pathway on the excited-state energy surface,
going from the extended exciton to the STE. (These en-
ergies are functions of all the atomic positions; we are
plotting them versus only one relevant degree of freedom.)
The self-trapping reduces the total triplet exciton energy by
roughly 2 eV, while the reduction in excitation energy, i.e.,
the Stokes shift, is about 6 eV. Crucially, there is no energy
barrier for self-trapping.

Figure 3 displays our calculated geometry and the elec-
tron and hole probability distributions for the STE, and
Table I lists key bond lengths and angles. Clearly, both the
electron and hole are highly localized about the ruptured
bond. Our STE contains precursors of the E0 and NBOHC
centers. The hole is trapped in a 2p orbital of the singly
coordinated oxygen atom, which is the candidate for the
NBOHC [28]. The triply coordinated silicon atom assumes
a planar sp2 configuration in relation to its three remaining
oxygen neighbors. The electron is localized primarily on
this silicon and to a smaller extent on the three oxygens. If
we remove the singly coordinated oxygen, we find the
FIG. 2 (color online). Left: total ground-state energies (open
circles) and triplet excited-state energies (solid dots) vs the Si-O
bond length sampled along the relaxation path going from the
delocalized exciton to the STE. The bond refers to the Si-O pair
whose bond ruptures during formation of the STE. Right:
excitation energy (or equivalently the luminescence energy at
that configuration) for the triplet exciton vs the length of the
ruptured bond.
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FIG. 3 (color online). Top: isosurfaces of probability for find-
ing the hole in the self-trapped configuration. The view is along
the c axis. Smaller red and larger blue spheres represent Si and O
atoms, respectively. Bottom: isosurfaces of the conditional elec-
tron probability when the hole is located at the position indicated
by the square in the self-trapped configuration. Isosurfaces are at
80%, 60%, 40%, and 20% of the maximum.
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candidate for the E0 center [29]. We briefly compare these
distributions and geometry to previous ab initio findings. In
the notation of Table I, Ref. [17] found a broken Si1-O1

bond (2.03–2.20 Å) and a hole localized on O1; however, it
also found a shrunken Si2-O1 bond (1.48–1.57 Å) and,
unusually, a substantial presence of the electron on O1

(15%–30%). References [18,20] found three different
STE structures, two of which (‘‘STE-A’’ and ‘‘Si-dist’’)
had a single broken Si1-O1 bond. STE-A, which is similar
to our geometry, was stable in clusters but unstable in a
bulk supercells. Si-dist had a long broken Si1-O1 bond
(2.54–2.81 Å), and had Si1 move substantially through
the plane of Oother atoms to a puckered configuration, quite
different from our planar arrangement; this Si1 further
backbonds with an O atom in the lattice.
TABLE I. Basic geometry of the STE. O1 refers to the oxygen
with a broken bond. Si1 refers to the threefold coordinated
silicon. Si2 refers to the silicon to which O1 remains bonded.
Oother refers to the remaining three neighbors of Si1.

Bond lengths (Å) Bond angles (deg)
Bulk STE Bulk STE

Si1-O1 1.60 1.97 O1-Si1-Oother 109 � 85
Si2-O1 1.60 1.68 Oother-Si1-Oother 109 � 120
Si1-Oother 1.60 1.66
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Table II presents our predicted energetic and optical
emission properties for the STE. There is excellent quanti-
tative agreement between experimental data and our
GW-BSE results, with the expected energy accuracy of
0.1–0.2 eV. For comparison, we present results based on
the constrained local spin-density approximation (CLSDA)
[30]. CLSDA describes the exciton as the self-consistent
solution to the DFT problem with excited electronic occu-
pancies. The failure of the CLSDA is salient for the large
Stokes shift, one of the prominent features of the STE. The
CLSDA calculations are plagued by numerous other prob-
lems [18,20]. For example, self-trapping within CLSDA is
prevented by an energy barrier: the tabulated CLSDA data
are found by initially stretching the Si-O bond substantially
(> 0:1 �A) before relaxing. If CLSDA relaxations begin
with the initial geometry used in theGW-BSE calculations,
the system reverts to the perfect crystal. We emphasize that
no barrier was found in the GW-BSE approach where the
STE forms spontaneously. These problems underline the
importance of the many-electron, correlated nature of the
exciton problem.

Analysis of the calculated results elucidates the mecha-
nism for exciton self-trapping. The low-lying unoccupied
bands in quartz arise from antibonding Si-O states.
Exciting an electron into them weakens the Si-O bond
and makes its rupture possible. The exciton can reduce
its energy by distorting the lattice so as to lower the energy
of the electron-occupied state and raise the energy of the
unoccupied state. These energy shifts generate the Stokes
shift. The energy reduction from the electronic levels
competes with the loss of bonding/cohesive energy from
the structural distortion. In a molecular system, all elec-
tronic states are spatially confined, and the excited system
should always distort because the energy lowering from the
level shifts is linear in the distortion amplitude while the
cohesive energy penalty is quadratic.

The situation in crystals differs from molecules in an
important respect concerning confinement. Excitons are
two-particle states, and their wave functions may be de-
scribed using the center of mass coordinate and the
electron-hole relative or separation coordinate. In undis-
torted crystals, Bloch’s theorem obliges the center of mass
to have a well-defined crystal momentum and hence be
completely delocalized. For tightly bound excitons, the
TABLE II. STE properties from experiments, GW-BSE calcu-
lations, and CLSDA calculations: �T , luminescent emission
energy; �EStokes, Stokes shift; P, degree of polarization of
emitted light along the c axis. Experimental ranges indicate
lowest and highest values found in the references.

Method �T �eV� �EStokes �eV� P

Experiment [6,10–14] 2.6–2.8 6.2–6.4 0.48–0.70
GW-BSE 2.85 6.37 0.72
CLSDA 4.12 2.14 � � �
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relative coordinate is confined to a few bond lengths. For
weaker binding characteristic of many semiconductors, the
range is 10–100 bond lengths. For self-trapping to occur,
both coordinates must become confined about the distor-
tion site with an extent of at most a few bond lengths
(exemplified in Fig. 3). Both confinement effects cost
kinetic energy and oppose self-trapping.

The properties of silica favor exciton self-trapping. We
find that, because of strong electron-hole attraction, the
untrapped exciton is already well confined in the relative
coordinate whose distribution is comparable to that of the
STE. For example, the electron-hole attraction energies for
these two different configurations differ by only �0:1 eV.
Thus, self-trapping will not cost significant confinement
energy for the relative coordinate. The confinement cost
arises predominantly from the center of mass degree of
freedom. Simple physical arguments [30] then show that
the lowest-energy state of the excited system is either
completely unconfined or highly confined to atomic di-
mensions. Which case prevails depends on the balance
between the energy benefit from structural distortion and
the confinement cost.

In SiO2, the center of mass has a large effective mass
dominated by the massive holes at the valence band edge:
m	 � �5–10�me (me is the free electron mass) [31].
Confining this mass in a region of a few Ångstroms costs
only �0:5 eV, small compared to electronic energy gains
of �2–5 eV. This situation differs from that of standard
semiconductors such as Si, Ge, or GaAs which have
(a) small effective masses m	 � 0:5me and (b) untrapped
excitons that are not well confined in the relative coordi-
nate. This doubly large confinement cost explains why
STEs are not observed readily in these semiconductors.

In summary, we investigated the STE in �-quartz using
state-of-the-art ab initio many-electron Green’s function
methods. Our results show that the STE forms by breaking
a Si-O bond, substantially distorting the surrounding
atomic structure and localizing on this distortion. The
excited electron and hole are localized on the broken-
bond Si and O atoms, respectively. Our predicted proper-
ties for the STE are in excellent quantitative agreement
with experiments. The theoretical results illuminate the
relevant physics of the trapping mechanism and underline
aspects unique to crystalline systems.
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