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Refraction of Water Waves by Periodic Cylinder Arrays
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We show that in the long wavelength limit, water waves propagate through an array of bottom-mounted
vertical cylinders as if the water has an effective depth and effective gravitational constant that depends on
the filling ratio of the cylinders, leading to refraction phenomena that can be described by analytic
formulas. The results are obtained with rigorous homogenization techniques, as well as the multiple
scattering formalism that gives full dispersion relationships. This phenomenon provides a mechanism to
control the flow of ocean wave energy, as exemplified by a water-wave focusing lens.
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FIG. 1 (color online). Schematic diagrams of a periodic array
of identical, vertical, rigid cylinders standing in water with
constant depth h (a), and a water column pierced by a vertical
rigid cylinder, which is surrounded by an ‘‘effective’’ water
medium (b). The top panels are the side views and the bottom
panels are the vertical views.
The interaction of water waves with periodic structures,
such as rippled bottoms, periodic cylinder arrays, and
periodic arrays of surface scatters, has received consider-
able attention [1–13]. Most of the interest is stimulated by
the discovery of the Bragg resonance of water waves when
the periodic length is a multiple of the half-wavelength,
leading to a huge reflection of water waves by a finite
periodic structure [1,2]. This phenomenon is not only
important to the understanding of the formation of periodic
sand bars near beaches, but also provides a mechanism for
coastal protection. Consequently, more general theories
and powerful methods have been proposed and imple-
mented for the water-wave studies over uneven bottom
topographies [3,4] and in vertical obstacle structures [5,6].

On the other hand, inspired by the rapid progress in the
field of photonic crystals [14], the technique of the Bloch
theorem has been applied recently to solve the dispersion
relations (band structures) of water waves in periodic
structures [7–11]. It is found that there exist some fre-
quency ranges in which wave propagations are forbidden,
giving rise to water-wave band gaps. The dispersions near
the band gaps are also greatly modified by the periodicity.
Based on the band structures of water waves, more intrigu-
ing phenomena such as the instabilities of periodically
sheared fluid [7], Bloch waves and domain walls over
drilled bottoms [8], and the superlensing effect [12] were
found.

While the frequency regime near the Bragg reso-
nance has attracted most attention, there have been few
studies on the long wave ranges far below the Bragg reso-
nance [13]. In this Letter, we study the influence of an ar-
ray of vertical bottom-mounted cylinders on the propaga-
tion of long water waves. For long waves (wavelength�
lattice constant a), we find that the periodic cylinder array
system behaves like an effective medium which has an
effective depth he and a renormalized gravitational con-
stant ge [15,16]. We are able to derive analytic formulas for
he and ge, and these formulas are very useful in predicting
refraction, reflection, or transmission results and we also
found the existence of a Brewster angle. The accuracy of
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these formulas is confirmed by dispersion relation calcu-
lations as well as numerical simulations using multiple
scattering techniques.

Our system has also its acoustic/electromagnetic (EM)
analogue [17], where an empirical formula was found for
the effective sound/light velocity �e [18,19]. However, no
analytical derivation is given. In addition, most of these
approaches focus on finding �e. For example, �e � �air has
been presumed in a simple model for the acoustic wave
analogue [17,19]. We stress the importance that in a 2D
problem, two constitutive parameters should be homogen-
ized in the same time and that comes naturally from our
formulation.

We consider linear, inviscid, and irrotational water
waves in infinite extent of water of constant depth h,
pierced with a square lattice of identical, vertical, rigid,
circular cylinders as shown in Fig. 1(a). Set r � �x; y� in
the horizontal plane and z as the vertical axis. For harmonic
water waves with angular frequency !, the vertical dis-
placement of the water surface ��r�ei!t obeys the two-
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FIG. 2 (color online). Reflection and refraction of a plane
water wave by an effective water medium.
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dimensional Helmholtz equation [5,6,10–12,20]:

�52 � k2�� � 0; (1)

which is subjected to the boundary condition of no flow
through the cylinder walls, namely

@�
@n
� 0 (2)

at the surface of each cylinder, where n is the direction
normal to the cylinder surface. The wave number k can be
obtained from the dispersion relation !2 � gk tanh�kh�,
where g is the gravitational acceleration.

We will first derive analytical formulas for he and ge
with the coherent-potential-approximation (CPA) method
[16,21,22] in the long wave limit with ka� 1. We con-
sider a circular water column [23] with radius R � a=

����
�
p

(so that �r2

�R2 equals the filling fraction fs �
�r2

a2 ), water
depth h, and pierced by a rigid circular cylinder with ra-
dius r, surrounded by the effective medium as shown in
Fig. 1(b). To deal with the case with uneven bottom, we use
the shallow water-wave equation (rigorous when kh� 1)
[3,4,9,20]:

5�h5 �� �
!2

g
� � 0; (3)

which implies a linear dispersion of ! �
������
gh
p

k and con-
tinuities of h @�@� and �. Using the cylindrical coordination
(�;�) with the origin at the center of cylinder, � can be
written as

�I�
X

m

�EmJm�k���FmHm�k���eim� whenR	�	 r;

�II�
X

m

�AmJm�ke���BmHm�ke���eim� when�>R;

where the Bessel-Hankel function Jm=Hm stands for the
incident/scattering waves, ke is the wave number for the
effective medium, and k for the water column. Using
@�I�r�
@� � 0, �I�R� � �II�R�, and h @�

I�R�
@� � he

@�II�R�
@� , the

scattering coefficient Dm �
Bm
Am

of the water column for
the mth-order cylindrical incident waves can be obtained
andDm � 0 (which ‘‘defines’’ the effective medium) when

0 � 
hkJm�keR��H0m�kR�J0m�kr� 
 J0m�kR�H0m�kr��

� hekeJ
0
m�keR��Hm�kR�J

0
m�kr� 
 Jm�kR�H

0
m�kr��:

(4)

When ka� 1, Eq. (4) becomes as

hek
2
e � �1
 fs�hk

2 for m � 0;

he � h
1
 fms
1� fms

for m 	 1:
(5)

Using ke �
!�������
gehe
p and k � !����

gh
p , the nonreflection condition

for the zeroth-order and first-order cylindrical incident
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waves can be written, respectively, as

ge �
1

1
 fs
g; he �

1
 fs
1� fs

h: (6)

For 1D model system with periodic uneven bottom, ge � g
for water waves [13,16], but in 2D, the ge is renormalized.
Besides, the dispersion in the effective medium can be
obtained as ke � nek, where

ne �
��������������
1� fs

p
: (7)

We note that Eq. (7) has appeared in acoustics [19], but has
been interpreted with a model with �e � �air and �e �
�1� fs��air. The correct homogenization should involve
both parameters as in Eq. (6).

This effective ne can be used to determine refraction
angle and Brewster angle. Then we consider the incidence
of a long plane water wave from the water with g and h
onto the effective water with ge and he as shown in Fig. 2.
Conservation of the parallel wave vector component at the
interface leads to

sin� � ne sin’ (8)

where � and ’ are the incident and refractive angles,
respectively. Using the continuity of � and h @�@y , the am-
plitude reflection coefficient rA and the amplitude trans-
mission coefficient tA can be obtained as

rA �
cos�
 Z cos’
cos�� Z cos’

; tA �
2 cos�

cos�� Z cos’
; (9)

where Z �
���������������������
ghe=�geh�

p
� �1
 fs�=

��������������
1� fs
p

. So when
� � �

2 , rA � 
1, leading to a complete reflection. When

� � �0 � arccos
1
 fs

2
; (10)

the reflection will be zero (Brewster angle). When � � �0,
2�� ’ � �.

The solution of Eqs. (1) and (2) is independent of h (only
dependent on k and the geometry of cylinders). So,
Eqs. (7)–(10) will be valid in any h (only limited by ka�
1) although they are obtained under kh� 1. This means
that the refraction of water waves by the periodic cylinder
array can occur in any depth, in contrast with the common
refraction of water waves by varying depth which can only
occur in the shallow water.
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To check the validity of the analytic formulas above, we
use the multiple scattering (MS) method [5,6,11,12], which
gives numerical results for Eqs. (1) and (2) for any k. In
periodic structures, ��r� � eiQ�ru�r�, where Q is the Bloch
wave vector and u�r� is a two-dimensional periodic func-
tion. Based on a new fast-convergence technique for lattice
sums, the dispersion relation k�Q� can be accurately calcu-
lated [11]. We find that the dispersions are isotropic and
linear when ka < 0:5� and thus a refractive index nd can
be defined: nd � jQj=k [18,19]. In Fig. 3, we compare the
refractive indexes of nd and ne for the long water waves in
periodic cylinder arrays with different filling fractions fs.
It can be seen that n increases with increasing filling
fraction and ne agrees well with nd. When fs > 0:5, the
scattering of high-order cylindrical waves becomes impor-
tant and the effective medium formula will deviate from
the accurate values.

To further verify our results, and to take us beyond the
long wavelength limit, we do MS simulations for the
incidence of a plane water wave with wavelength � �
5a�ka � 0:4�� on a ten-layer cylinder array with radius
r � 0:35a extending to infinity in the x direction. The
wave patterns for different incident angles � of 20�, 40�,
60�, 80� are shown in Figs. 4(a)–4(d). Above the cylinder
array, some nodes can be seen due to the interference of
incident and reflection waves. Inside the cylinder array, the
transmitted waves have a well-defined wave front, showing
refraction with refraction angle ’ determined as 17�, 32�,
46�, and 54�, respectively. We found that an isotropic
refractive index of nr � 1:19, satisfying the Snell law
sin� � nr sin’, can be obtained for all the incident angles.
When the water waves encounter the bottom side of the
cylinder array, they will refract again and become parallel
to the initial incidence. In Fig. 3, we plot the refractive
index nr (dots) for different fs, agreeing well with the
above analytic values and dispersion calculations.

In Fig. 4(e), we show the reflectance vs incident angle �
for a nine-layer cylinder array. We have found that the
reflection can be zero when � � 32� or 68� and the water
waves can pass through the cylinder arrays completely. The
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FIG. 3 (color online). The water-wave refractive index of
periodic cylinder arrays as a function of the filling fraction. ne
is determined from Eq. (7), nd is determined from dispersion
calculations, and nr is determined by examining the wave fronts
of plane wave in Figs. 4(a)–4(d).
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first reflection dip shifts with varying the thickness of the
cylinder array and is due to the Fabry-Perot effect. The
second reflection dip will persist at � � 68� when the
thickness of the cylinder array is varied, agreeing well
with the Brewster angle of �0 � 72� predicted by the
effective medium theory of Eq. (10). Note that the
Brewster angle phenomenon exists in optics for the p
polarization incidence. Zero reflection when � � �

4 (here
�0 �

�
3 when fs ! 0) has also been found in refraction of

water waves when the depth is slightly varied [2]. It is the
first time that the Brewster angle phenomenon is found for
water waves in cylinder arrays (also for acoustics/EM), and
it also illustrates the usefulness of the effective medium
formulas.

By now we have shown that the refraction of water
waves by the cylinder arrays can occur in any water depth
and will obey the Snell refractive law, with effective index
given by Eq. (7) when ka < 0:5�. Many concepts in
refractive optics can be applied to design the refractive
devices for water waves based on such array structures.
Water-wave focusing may make an impact on the electric
generation with the ocean wave energy (EGOWE) [24]. In
many situations, the efficiency and application of EGOWE
is limited by the small wave amplitude. The cylinder
structures can be used to focus water-wave energy [25],
and thus increase the conversion efficiency.

In Fig. 5, we demonstrate the focusing of a plane water
wave with � � 5a and with intensity of unit 1 by a bicon-
vex periodic array of 657 cylinders with r � 0:35a. The
plane water wave is incident from the left hand side of the
cylinder array. The spatial pattern of transmitted intensity
is shown in Fig. 5(a) and the focusing of the transmitted
waves is evident. To quantitatively clarify the focusing
FIG. 4 (color online). Incidence of a plane water wave with
wavelength � � 5a on cylinder arrays with r � 0:35a: wave
patterns for different incident angles of 20� (a), 40� (b), 60� (c),
80� (d) for a ten-layer cylinder array, and the reflectance as a
function of the incident angle � for a nine-layer cylinder
array (e).
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FIG. 5 (color online). Focusing of a plane water wave with
� � 5a and with intensity of unit 1 by a biconvex periodic array
of 657 cylinders with r � 0:35a: (a) the spatial pattern of
transmitted intensity, (b) the variation of the intensity along
the x axis at y � 0, and (c) the variation of the intensity along
the y axis at x � 82:4a.
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effect, the intensity along the x axis is plotted in Fig. 5(b).
We can see a maximum of intensity of 3.8 at x � 82:4a and
y � 0. The intensity along the y axis at x � 82:4a is shown
in Fig. 5(c), showing a transverse full width at half maxi-
mum of 6:8a and 44% of wave energy within jxj< 30a can
be focused into a small area of jxj< 5a. The width of focus
is already comparable to the wavelength and the focusing
effect can, of course, be enhanced with a wider aperture
device.

In summary, we have demonstrated that the long water
waves propagate through an array of bottom-mounted
cylinders as if it has an effective depth and gravitational
constant [given by Eq. (6)], and we find an effective
refractive index which can be used with the Snell refractive
law and predicts a Brewster angle. This phenomenon can
be used to control the flow of ocean wave energy and we
present a conceptual design for a water-wave focusing lens
based on this idea.
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