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Within density functional theory, a variational particle number approach for rational compound design
(RCD) is presented. An expression for RCD is obtained in terms of minimization of a suitably defined
energy penalty functional whose gradients are the nuclear and the electronic chemical potential. Using
combined quantum and molecular mechanics, a nonpeptidic anticancer drug candidate is designed.
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The design of optimized compounds with specific mo-
lecular properties is a central goal of many research fields
in chemistry, material sciences, and pharmacy. However,
even in silico a systematic screening of chemical space for
interesting properties is beyond any current capacity [1].
Chemical space is the high-dimensional molecular space
spanned by all the possible combinations (stoichiometries)
and configurations (isomers) of electrons and nuclei. In
general terms, compound design efforts usually attempt a
mapping of a given molecular system (defined by its
Hamiltonian ) to the observable of interest (O). Then,
key variables have to be identified which allow one to
drastically reduce chemical space to a relevant and small
subspace. Once the information is obtained of how FH
needs to be modified such that the observable of interest
approaches a desired molecular property (Q,), one at-
tempts to invert the initial mapping,

(FH — 0)<=(0 — H ). (1)

Therefore, one tries to identify an optimal system JH opt
simply via Oy = Oy — H opt- Within conventional ra-
tional drug design for instance, the interaction of a given
drug candidate (JH) to a protein is often analyzed in much
detail in order to know how to increase its binding affinity
(0) via structural modifications. Thus, the underlying in-
terest in a given system () is usually due to its interest-
ing properties and their potential tuning by variation of
in its chemical space.

A large variety of approaches exist that address this
inversion problem, ranging from empirical-statistical
quantitative structure property relationships to classical
force field and semiempirical calculations [2]. The analyti-
cal expression for the potential energy in empirical force
fields and the fact that the free energy is an equation of
state has motivated studies connecting different molecules
reversibly through a coupling parameter, commonly called
A. Thermodynamic integration and other approaches to
relative free energies have been successfully carried out
ever since Kirkwood’s seminal paper in 1935 [3.4].
However, to declare A a dynamical variable in the frame-
work of a statistical mechanics scheme and to use it for
compound design has been implemented only a decade ago
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[5,6]. Unfortunately, force-field approaches are intrinsi-
cally limited due to their classical and empirical nature.
Specifically, they will fail to describe all those regions in
chemical space where electronic structure effects occur or
which have not yet been parametrized. Consequently, they
do not allow one to freely explore chemical space for
compound design. Using quantum mechanics, it is possible
to optimize deterministically J{ throughout chemical
space and thereby also to carry out de novo compound
design in the sense of Refs. [7-9]. However, even a de-
tailed and accurate understanding of the left-hand expres-
sion in Eq. (1) does not yet necessarily lead to an inversion
of the mapping. Consequently, current applications of first
principles methods are quite heuristic.

While a general inversion of the mapping of H — O is
not possible (different s can have a comparable prop-
erty), we attempt here to recursively invert the mapping
locally (local in chemical space). That is, starting from a
given compound, a nonheuristic formulation for a rational
compound design from first principles is presented. The
scheme iteratively minimizes a penalty functional in par-
ticle space using standard density functional theory (DFT)
[10-12] within a grand-canonical ensemble (GCE) nota-
tion. For demonstration purposes the presented approach is
applied to the design of a nonpeptidic inhibitor of the
anticancer target human XIAP (X-chromosome linked
inhibitor-of-apoptosis-proteins), which are overexpressed
in cancer cells [13-16].

Within DFT and the Born-Oppenheimer approximation
to the adiabatic separation of the nuclear and electronic
wave function, any ground-state observable O is a func-
tional of the electron density n. The latter is for a fixed
number of electrons N, up to a constant in a one-to-one
relationship to the external potential v [10]. For an unper-
turbed system, v is a simple functional of the nuclear
charge distribution Z: v[Z](r) = — [dr'Z(x')/Ir — ¥'|. In
the classical point charge limit Z(r) = Z;6(r — R;), where
Z; is the number of protons at r = Ry, i.e., the atomic
number of atom I. Consequently, the observable O can be
seen as a function of N, and as a functional of Z, O[Z](N,).

In analogy to the variational optimization of atom cen-
tered potentials for molecular properties [17], one can
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define an expression for rational compound design via a
penalty functional P, which is to be minimized iteratively
by gradient based variations of N, and Z(r),

minP(Z](V,) = minlO[Z)(N,) = O’ (@)

P[Z](N,) penalizes deviations of O[Z](N,) from a desired
reference property Oy. Equation (2) turns rational com-
pound design into a minimization problem in the discrete
chemical space spanned by electrons and nuclei. As in all
iterative minimization problems in high-dimensional
spaces, analytical gradients offer a fundamental gain in
efficiency with respect to screening techniques or finite
differences. In this sense §P/6Z and 9P/dN,—available
from first principle—can be used within all sorts of gra-
dient based minimization schemes like Newton’s rule or
conjugate gradient methods [18].

Consider O[Z](N,) to be the GCE energy functional
E[Z](N,); i.e., our system JH is in contact with an electron
and proton particle reservoir, and Oy, = E, = E[Z](N,),
then Eq. (2) reduces to the zero temperature GCE varia-
tional theorem [19]. The electronic GCE energy E[Z](N,)
is obtained from the stationary principle for atoms and
molecules at a fixed Z [20]: 8{E[Z](N,) — u.N,} =0,
where E[Z](N,) = [drnv + Fgcln]. Fgeln] is the uni-
versal, only implicitly dependent on Z, GCE ground-state
functional, while wu, is a Lagrange multiplier attached to
the constraint that N, = [ drn and is called the electronic
chemical potential [, = SE[Z](N,)/dn(r) = 0E[Z](N,)/
dN,]. u, is of central importance in DFT and is greatly
exploited within conceptual DFT [21]. After minimization
of E[Z](N,) with respect to n, the total potential energy of
a system can be given as a functional of Z, E°'[Z](N,) =
E[Z](N,) +1/2 [drdr'Z(r)Z(¥')/[r — 1'|.

In analogy to the electronic chemical potential, we in-
troduce here a nuclear chemical potential, w,, which ex-
plicitly measures the tendency of the molecule to vary its
nuclear structure Z. Unlike w, (which corresponds to the
molecular electronegativity [22]), u, is not a constant for
each molecule but a function of space because variations of
the ionic charge distribution are allowed everywhere in
space,

,(r) = ;ZL(:) — - [ dr’( ") e, r’)>

Ir —r'|
8Fgcln] , Z(r')
Tz ] e @

Here, nV(r, r’) denotes the derivative 8n(r')/8Z(r), which
can be approximated within the linear response in the
electronic structure n(r’) of the system being induced by
a local infinitesimally small variation of the ionic charge
distribution Z(r) = Z(r) + dZ: nM =SSN [0V +
# V"] This perturbed density is available within
CPMD [23] using the density functional perturbation mod-
ule [24] and the perturbation Hamiltonian of Ref. [17].
S8Fgc[n]/8Z(r) consists of the functional derivatives of the

Coulomb energy, of the Kohn-Sham expression for the
kinetic energy of the electrons, and of the exchange-
correlation energy with respect to Z. However, for a dis-
crete ionic charge distribution and within first order per-
turbation theory, Eq. (3) reduces simply to the electrostatic
field at r,

, n(')

Z
=~ ED(p) = — 1
m,(r) = EW(r) fdr r— o] + EI r—R| (€))

Within first order perturbation theory the derivative of the
energy with respect to changes in atomic number was
already presented [25,26]. However, here we consider the
explicit molecular response upon an infinitesimal small
variation of the nuclear charge distribution everywhere in
space, which goes beyond the usual expression for the
molecular response upon a variation in the external poten-
tial, namely 6 E/8v = n. While the validity of Kohn-Sham
DFT for the unphysical regime of pure electronic states
involving noninteger occupation numbers is by now well
established [27,28], fractional atomic numbers (classical
point charges) are less problematic.

As an illustration, atomic potential energies E[Z;](N,)
have been computed using DFT and the BLYP functional
[29-32] for fractional number of particles (Fig. 1). The
derivative discontinuity at integer values of N,, as expected
for the exact yet unknown exchange-correlation potential
[20], is not reproduced by the employed approximation to
the exchange-correlation functional [32]. However, the
typical convex shape of the isoprotonic curves is repro-
duced. The isoelectronic curves are concave, which is in
agreement with Ref. [22]. The slope of the E[Z;](N,)
surface in Fig. 1 corresponds hence to linear combinations
of u,(r = R;) and u,. Note that the system is significantly
more sensitive to variations of Z than of N,.

Within a GCE formalism u, and u, represent the
respective response of a given system in contact with
particle reservoirs upon variation of its electronic or its
ionic structure. Higher derivatives of the electronic and
nuclear chemical potentials define reactivity response
functions and indices in the spirit of conceptual DFT

FIG. 1 (color). Left: Atomic potential energy (a.u.) [32] versus
the number of electrons N, and the atomic number Z(r = R;).
Fractional independent changes of 0.2 for Z and N, range from
boron (N, = 5,Z = 5) up to fluorine (N, =9,Z =9). E(N, =
5,Z; = 5) (boron) is set to zero, and all other values refer to it.
Right: 3D projection of the electrostatic potential [~ u,(r),
Eq. (4)] in the molecular plane of formic acid.
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[21]. For ground-state systems, further features of w, can
be established, (i) u,(r # R;) is related to the proton
affinity at r for the given geometry {R;}. As an illustration,
a projection of u,(r # R;) in the molecular plane of
formic acid is presented in Fig. 1. As intuition would
suggest, the values are largest close to the oxygen atoms.
Note that for pseudopotential or valence electron density
calculations the results at r = R; are nonphysical. (ii) All
m,(r = R;) are cusps. They measure the transmutational
tendency for each atom 7 in a molecule. We suggest to call
u,(r = R;) an alchemical potential. (iii) Chemically seen,
—u,(r = R;_y) measures a static acidity, i.e., the ten-
dency of the molecule to annihilate the proton. (iv) For
pseudopotential DFT calculations, we approximate the
alchemical potential in Eq. (3) not by Eq. (4) but by the
expectation value of the perturbation Hamiltonian J{| and
the unperturbed electronic structure, u,(r =R;) =
Ef,l) =(H}) = (Zja,,j VFPP({o,})), where we use the pa-
rameter (o) dependent analytical pseudopotentials
ViP({o;}) of Goedecker et al. [33]. Here, a7, V" ({o}}) =
—1/|r — Rylerf[|r — R;|/o{] needs to be added to the
perturbation Hamiltonian given explicitly in Ref. [17]. In
this study, u,(r = R;) is hence approximated by the sum
of the first order perturbations of the energy induced by
infinitesimal variations {o; = o; + do;} and has been
implemented into CPMD [23]. For an atom it was found
to grasp roughly 90% of a finite difference result.

In principle, for the purpose of drug design, all relevant
properties that define the druggability of a compound
should be included in the penalty formalism of Eq. (2)
and ab initio molecular dynamics (MD) should be carried
out in order to include all finite temperature effects.
However, without any loss of generality, here only the
inhibitor’s binding affinity is considered as observable,
and an experimentally known suitable inhibitor compound
is used as the initial structure. Specifically, in the case of
XIAP, effective tetrapeptidic inhibitors were identified
in vitro through combinatorial screening of the amino
acid positions 1, 2, and 4 of the AVPI [Fig. 2(a)] sequence
[35]. Although the resulting peptidic inhibitor ARPF
[Fig. 2(b)] presents a high affinity (ICs, of subnanomolar
concentration), such peptidic sequences would be easily
cleaved in vivo by proteases, which prohibits any drugg-
ability. To our knowledge, no nonpeptidic XIAP inhibitor
has been proposed up to date, i.e., a nonpeptidic structure,
H opt> 18 needed which maximizes as observable, O, the
energy of interaction, EM = ECm — Einh — Fprot Here,
E°°™ represents the total potential energy of the complex
of the inhibitor bound to the protein, and EP® and E™
correspond to the energies of the isolated protein and the
inhibitor, respectively. We use for the corresponding pen-
alty the gradient with respect to the nuclear charge distri-
bution of the inhibitor (Z"), &P/8Z = SE©™/
SZinh _ 5Einh/5Zinh.

For the design of a nonpeptidic inhibitor derived from
ARPF only independent transmutations of the 9 second
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FIG. 2 (color). Left: Topological sketches of inhibitor struc-
tures. Upper panel: Peptidic [(a) AVPL: R1 = Ala, R2 = Val,
R3 = Pro, R4 =Tle. (b) ARPF: R1 = Ala, R2 = Arg, R3 =
Pro, R4 = Phe]. Middle panel: First guess nonpeptidic ARPF
[(c)]. Lower panel: Final guess nonpeptidic ARPF [(d) np-
ARPF]. Terminal and peptidic atoms are specified, hydrogens
are partly omitted. Right: The QM-MM [39] optimized geometry
of np-ARPF [(d)] in the XIAP binding pocket. Using the
alchemical potential atoms of the three peptide bonds of the
ARPF [(b)] have been transmutated to O, C, N, and F (respec-
tively red, black, blue, or green spheres).

row atoms (I = 1,...,9) constituting the three peptide
bonds that need to be altered (Fig. 2) have been considered.
Thus, the gradient reduces to variations at the positions of
these atoms only, &P/6Z=73; (JE°™/0Z; —
IE™/0Z;) = 37 [ui™(Ry) — wi™R;)].  Supposing
that every atomic number can be changed only by —1, 0,
or 1, there are (3° — 7) possible nonpeptidic mutants. It is
hence intractable to fully screen the relevant chemical
space and the penalty gradients offer here a way to guide
the exploration at a first principles level of theory.

In order to follow these penalty gradients for a relevant
configuration 5 ns of GROMOS9% 43A1 [36] force-field
based classical MD simulation of the human XIAP have
been conducted in order to equilibrate the enzyme-peptide
complexes for AVPI [Fig. 2(a)] and ARPF [Fig. 2(b)] [37].
For the computation of the penalty and its gradients, a
snapshot of the equilibrated XIAP-ARPF complex has
been chosen for an isolated cluster calculation with DFT
[32]. This cluster consist§ out of the inhibitor and all
residues of XIAP within 5 A distance of the peptidic atoms,
being saturated with hydrogen atoms. Starting from the
highly potent ARPF [Fig. 2(b)], the 9 peptidic inhibitor
atoms have been transmutated according to their alchem-
ical potential. After one iteration a new nonpeptidic model
compound [Fig. 2(c)] has been obtained that exhibits an
enhancement of the interaction energy by roughly
50 kcal/mol. However, DFT calculations show that one
step is insufficient: the structure is unstable as a monomer
in gas phase. An iterative procedure following the
{u,(R;)} only for one atom per peptide bond, combined
with conservation of charge (through saturation with hy-
drogen atoms), resulted after four steps into another stable
nonpeptidic inhibitor compound, np-ARPF [Fig. 2(d)].

Relative to a QM-MM equilibrated wild-type AVPI-
XIAP complex [38,39], the ARPF and np-ARPF-XIAP
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(Fig. 2, right) complexes yield within QM-MM, respec-
tively, an increase of the averaged interaction energies by
—18.9 and —18.5 kcal/mol. Since only hydrogen atoms
have been used to satisfy the valency of the modified
peptide bonds, the entropic contributions to the macro-
scopic binding affinity for ARPF and np-ARPF are ex-
pected to be comparable; i.e., the ICs of the np-ARPF can
likewise be expected to be in the subnanomolar range.

In conclusion, we have extended conceptual DFT by the
chemical potential for nuclei, u,(r). We propose to call
mn(r = R;) the alchemical potential: it measures the ten-
dency of a system to transmutate a given atom /. QM-MM
calculations combined with stability tests have allowed one
to successfully apply the presented scheme to the rational
compound design of a new nonpeptidic XIAP inhibitor
with an expected binding affinity comparable to a highly
potent tetrapeptidic inhibitor. Overall, the presented ap-
proach is general enough to be extended and applied to
other compound design problems exploring chemical
space in a less heuristic manner.
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