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We investigate the effects of an external magnetic field in the gap structure of a color superconductor
with three massless quark flavors. Using an effective theory with four-fermion interactions, inspired by
one-gluon exchange, we show that the long-range component ~B of the external magnetic field that
penetrates the color-flavor locked phase modifies its gap structure, producing a new phase of lower
symmetry. A main outcome of our study is that the ~B field tends to strengthen the gaps formed by
~Q-charged and ~Q-neutral quarks that coupled among themselves through tree-level vertices. These gaps
are enhanced by the field-dependent density of states of the ~Q-charged quarks on the Fermi surface. Our
considerations are relevant for the study of highly magnetized compact stars.
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After the suggestion that three-flavor quark matter may
actually be the ground state of strong interactions [1],
quark stars were postulated as possible astrophysical ob-
jects. It is also very likely that quark matter occupies the
inner regions of neutron stars. Our present knowledge of
QCD at high baryonic density indicates that this new state
of matter might be in a color superconducting phase (for
reviews, see [2]). On the other hand, it is well known [3]
that strong magnetic fields, as large as B� 1012–1014 G,
exist in the surface of neutron stars, while in magnetars
they are in the range B� 1014–1015 G, and perhaps as high
as 1016 G [4]. The physical upper limit to the total neutron
star magnetic field, as arising from comparing the magnetic
and gravitational energies, is of order B� 1018 G [3]. If
quark stars are self-bound rather than gravitational-bound
objects this upper limit could go higher. In this Letter we
investigate the effect of a strong magnetic field in color
superconductivity, with the aim of further studying its
possible astrophysical implications.

We will start by considering three massless quarks. In
this case, it is well established that the ground state of high-
dense QCD corresponds to the color-flavor locked (CFL)
phase [5]. In this phase, quarks form spin-zero Cooper
pairs in the color- antitriplet, flavor-antitriplet representa-
tion, thereby breaking the original SU�3�color � SU�3�L �
SU�3�R �U�1�B symmetry to the diagonal subgroup
SU�3�color�L�R. One can now ask how this scenario will
change when a magnetic field is switched on. Would the
external field affect the pairing phenomena? In a conven-
tional electromagnetic superconductor, since Cooper pairs
are electrically charged, the electromagnetic gauge invari-
ance is spontaneously broken and the photon acquires a
mass that can screen a weak magnetic field: this is the
Meissner effect. In spin-zero color superconductivity,
although the color condensate has nonzero electric charge,
there is a linear combination of the photon and a gluon that
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remains massless [5]. The unbroken U�1� group is gener-
ated, in flavor-color space, by ~Q � Q� 1� 1�Q, where
Q is the electromagnetic charge generator [6]. Thus a
spin-zero color superconductor may be penetrated by a
long-range remnant ‘‘rotated magnetic’’ field ~B. In the
9-dimensional flavor-color representation that we will use
in this Letter, the ~Q charges of the different quarks are

s1 s2 s3 d1 d2 d3 u1 u2 u3

0 0 - 0 0 - + + 0
, (1)

in units of the ~Q charge of the electron ~e � e cos�, where �
is the mixing angle [7] (we set @ � c � 1 henceforth).

Although the interaction of an external magnetic field
with dense quark matter has been investigated by several
authors [8,9], they disregarded the effect of the penetrating
~B field on the gap structure. However, the ~B field can
change the gap structure and lead to a new superconducting
phase. To understand how this can occur notice that due to
the coupling of the charged quarks with the external ~B
field, the color-flavor space is augmented by the ~Q charge
operator, and consequently the order parameter of the CFL
splits in new independent pieces.

Based on the above considerations, and imposing that
the condensates should retain the highest degree of sym-
metry, we propose the following ansatz for the color-flavor
structure of the order parameter of three massless quarks in
the presence of a magnetic ~B field:

�� � k�1 �U0 � N��0 � k�2 U�0 � k�n N�0

� k�c U��� ���	 (2)

with color-flavor matrices defined as: U0 � �ia�
j
b, U �

�ja�ib, N � ��1
a�1

i � �
2
a�2

i ��
3
b�

3
j � �a$ b; i$ j�; with
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a; b and i; j denoting color and flavor indexes, respec-
tively. The matrices �0 � diag�1; 1; 0; 1; 1; 0; 0; 0; 1�,
�� � diag�0; 0; 0; 0; 0; 0; 1; 1; 0�, and �� � diag�0; 0; 1;
0; 0; 1; 0; 0; 0� are ~Q-charge projectors with algebra
����0 � ���0��, for �;�0 � 0;�;�, and �0 ��� �
�� � 1.

An applied magnetic field reduces the flavor sym-
metries of QCD, as only the d and s quarks have equal
electromagnetic charge. Thus, the order parameter (2)
implies the following symmetry breaking pattern:
SU�3�color � SU�2�L � SU�2�R � U�1�B � U����1�A �
U�1�e:m: ! SU�2�color�L�R � eU�1�e:m:. The U����1�A
symmetry is connected with the current which is an
anomaly-free linear combination of s; d, and u axial cur-
rents [10]. The locked SU�2� corresponds to the maximal
unbroken symmetry, and as such it maximizes the conden-
sation energy. Notice that it commutes with ~U�1�e:m:.

Therefore, there are 13 broken generators, 8 of which
become the longitudinal components of massive gauge
bosons, and 5 remain as Goldstone bosons. One is associ-
ated to the spontaneous breaking of baryon symmetry, one
with the breaking of the anomaly-free U����1�A, and the
remaining 3 to the breaking of the chiral SU�2� group. This
symmetry breaking pattern suggests that the new phase has
quantitative and qualitative differences with respect to the
CFL phase. We will call it magnetic CFL (MCFL) phase.
In particular, the MCFL phase will possess a distinctive
low energy physics.

To trace back the physical origin of the new structures in
(2) we should take into account that despite the ~Q neutral-
ity of all the condensates, they can be composed either by
neutral or by charged quarks. Condensates formed by
~Q-charged quarks feel the field directly through the mini-
mal coupling of the background field ~B with the quarks in
the pair. A subset of the condensates formed by ~Q-neutral
quarks, can feel the presence of the field through the tree-
level vertices that couple them to charged quarks. The gaps
�B
A=S 
 �kn � kc�=2 are antisymmetric/symmetric combi-

nations of condensates composed by charged quarks and
condensates formed by this kind of neutral quarks. The
gaps �A=S 
 �k1 � k2�=2, on the other hand, are antisym-
metric/symmetric combinations of condensates formed by
neutral quarks that do not belong to the above subset. The
only way the field can affect �A=S is through the system of
highly nonlinear coupled gap equations. The CFL gap
matrix is obtained when �B

A=S � �A=S. In principle, the
symmetries of the problem allow for two extra independent
symmetric gaps. But these are only due to subleading color
symmetric interactions, and are formed by neutral quarks
that are not coupled to charged quarks, so they belong to
the same class as �S. Thus, in a first approach to the
problem, we will consider that those can as well be de-
scribed by �S.

To study the MCFL phase we use a Nambu-Jona-Lasinio
(NJL) four-fermion interaction abstracted from one-gluon
15200
exchange [5]. This simplified treatment, although, disre-
gards the effect of the ~B field on the gluon dynamics and
assumes the same NJL couplings for the system with and
without magnetic field, keeps the main attributes of the
theory, providing the correct qualitative physics. We will
postpone the study within QCD for the future.

The NJL model is defined by two parameters, a coupling
constant g and an ultraviolet cutoff �. The cutoff should be
higher than the typical energy scales in the system, that is,
the chemical potential � and the magnetic energy

�������
~e ~B
p

.
The gap equation of the NJL model in coordinate space

reads

�� � i
g2

4�2 �
T
A�

�S21�x; y����A��4��x� y�; (3)

where �A and �� are the Gell-Mann and Dirac matrices,
respectively. For simplicity, we have omitted explicit fla-
vor, color, and spinor indexes in the equation. S21 is the
21-component of the quark propagators in the Nambu-
Gorkov representation.

The computation of the field-dependent quark propaga-
tors is laborious (details will be given elsewhere [11]), but
it can be managed with the use of the Ritus’ method,
originally developed for charged fermions [12] and re-
cently extended to charged vector fields [13]. In Ritus’
approach the diagonalization in momentum space of
charged fermion Green’s functions in the presence of a
background magnetic field is carried out using the eigen-
function matrices Ep�x�. These are the wave functions of
the asymptotic states of charged fermions in a uniform
magnetic field and play the role in the magnetized medium
of the usual plane-wave (Fourier) functions eipx at zero
field. With the help of the Ep�x� functions, we first compute
the propagators in momentum space, and then transform to
coordinate space adequately. Leaving aside the color-
flavor structure, the neutral quark propagators are of the
same type as for the CFL phase. The charged (positive/
negative) quark propagators in the background of a ~B field
that lies in the ẑ axis are

S���21 �
��
���
�5kc

p2
0 � �j �p

���j ���2 � k2
c

�
������5kc

p2
0 � �j �p

���j ���2 � k2
c

(4)

where �p��� � �0;�
���������������
2j~e ~B jl

p
; p3� are the spatial compo-

nents of the momentum for (positive/negative) charged
quarks and the integer number l labels the Landau levels.
In (4), ����� � �1� �0�  �̂p����=2 are the energy projectors
in the ultrarelativistic limit for (positive/negative) charged
quarks in the external field, with �̂p��� representing the
normalized charged-quark three-momentum. On the
Fermi surface, the highest occupied Landau level is ob-
tained as lmax � �

�2

2j~e ~B j
	, where the bracket denotes the

integer part.
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Since color superconductivity, although of type I, allows
the penetration of a rotated magnetic field, it is natural to
expect that the condensates made up of ~Q-charged quarks
will be strengthened by the nonzero ~B, because these
paired quarks have opposite ~Q charges and opposite spins,
hence parallel (instead of antiparallel) magnetic moments.
The situation here has some resemblance to the magnetic
catalysis (MC) of chiral symmetry breaking [14], in the
sense that the magnetic field strengthens the pair forma-
tion. Despite this similarity, the way the field influences the
pairing mechanism in the two cases is quite different. The
particles participating in the chiral condensate are near the
surface of the Dirac sea. The effect of a magnetic field
there is to effectively reduce the dimension of the particles
at the lowest Landau level (LLL), which in turn strengthens
their effective coupling, catalyzing the chiral condensate.
Color superconductivity, on the other hand, involves
quarks near the Fermi surface, with a pairing dynamics
that is already �1� 1� dimensional. Therefore, the ~B field
does not yield further dimensional reduction of the pairing
dynamics near the Fermi surface and hence the LLL does
not have a special significance here. Nevertheless, the field
increases the density of states of the ~Q-charged quarks, and
it is through this effect that the pairing of the charged par-
ticles is reinforced by the penetrating magnetic field. Be-
low we will analytically show that this is indeed the case.

To solve the gap Eq. (3) for the whole range of magnetic-
field strengths we need to use numerical methods. We have
found, however, a situation where an analytical solution is
possible. This corresponds to the case ~e ~B * �2=2. Taking
15200
into account that the leading contribution to the gap solu-
tion comes from quark energies near the Fermi level, it
follows that for fields in this range only the LLL (l � 0)
contributes.

Using the approximation �B
A � �B

S ;�A; �A � �S, the
gap equations decouple and the equation for �B

A is

�B
A �

g2

3�2

Z
�

d3q

�2��3
�B
A����������������������������������������

�q���2 � 2��B
A�

2
q

�
g2~e ~B

3�2

Z �

��

dq

�2��2
�B
A�������������������������������������

�q���2 � ��B
A�

2
q ;

(5)

where the first (second) term in the right-hand side of
Eq. (5) corresponds to the contribution of ~Q-neutral
(charged) quark propagators, respectively. For the last
one, we dropped all Landau levels but the lowest, as we
are interested in the leading term.

The solution of Eq. (5) reads

�B
A � 2

�������
��

p
exp

�
�

3�2�2

g2��2 � ~e ~B�

�
; (6)

with � 
 ���, to be compared with the antisymmetric
CFL gap [2]

�CFL
A � 2

�������
��

p
exp

�
�

3�2�2

2g2�2

�
: (7)

In this approximation the remaining gap equations read
�B
S � �

g2

6�2

Z
�

d3q

�2��3
�B
A����������������������������������������

�q���2 � 2��B
A�

2
q �

g2~e ~B

6�2

Z �

��

dq

�2��2
�B
A�������������������������������������

�q���2 � ��B
A�

2
q ; (8)

�A �
g2

4�2

Z
�

d3q

�2��3

�
17

9

�A��������������������������������
�q���2 � �2

A

q �
7

9

�A����������������������������������������
�q���2 � 2��B

A�
2

q �
; (9)

and

�S �
g2

18�2

Z
�

d3q

�2��3

�
�A��������������������������������

�q���2 � �2
A

q �
�A����������������������������������������

�q���2 � 2��B
A�

2
q �

: (10)
We express below the solution of these gap equations as
ratios over the CFL antisymmetric and symmetric gaps

�A

�CFL
A
�

1

2�7=34�
exp

�
�

36

17x
�

21

17

1

x�1� y�
�

3

2x

�
; (11)

where x 
 g2�2=�2�2, y 
 ~e ~B=�2, and

�B
S

�CFL
S

�
�B
A

�CFL
A

�
3

4
�

9

2x ln2

y� 1

y� 1

�
; (12)

�S

�CFL
S
�

�A

�CFL
A

3

2

�
1�

4

1� y

�
: (13)
Note that our analytic solutions are only valid at strong
magnetic fields. The lower value ~e ~B��2=2 corresponds
to ~e ~B��0:8–1:1� � 1018 G, for �� 350–400 MeV. For
fields of this order and larger the �B

A gap is larger than �CFL
A

at the same density values. Note also that for ~e ~B * �2,
�B
A=S grow and �A=S tend to lower, and they clearly split.

How fast or slowly they do depends very much on the
values of the NJL couplings. For example, for x� 0:3 [15],
one finds �A � 0:2�B

A for y � 3=2, while for x� 1 then
�A � 0:5�B

A.
All the gaps feel the presence of the external magnetic

field. As expected, the effect of the magnetic field in �B
A is

to increase the density of states, which enters in the argu-
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ment of the exponential as typical of a BCS solution. The
density of states appearing in (6) is just the sum of those of
neutral and charged particles participating in the given gap
equation (for each Landau level, the density of states
around the Fermi surface for a charged quark is ~e ~B=2�2).

All the ~Q-charged quarks have common gap �B
A. Hence,

the densities of the charged quarks are all equal. As two of
these quarks have positive ~Q charge, while the other two
have it negative, the ~Q neutrality of the medium is guar-
anteed without having to introduce any electron density.

Our zero-temperature results imply that a propagating
rotated photon with energy less than the lightest charged-
quark mode cannot scatter, since all the ~Q-charged quarks
acquire a gap and all the Nambu-Goldstone bosons are
neutral. The anisotropy present in the background of an
external magnetic field and the existence of charged
Goldstone bosons in CFL but not in MCFL indicates a
rather different low energy physics, including transport
properties. In particular, the MCFL superconductor is
transparent and behaves at T � 0 as an anisotropic dielec-
tric, as opposed to the isotropic dielectric behavior of the
CFL phase [7,16]. However, similar to the CFL, the me-
dium will become optically opaque as soon as leptons are
thermally excited [17].

In previous analysis (see the first paper in [8]) the critical
magnetic field at which the CFL pairing is destroyed was
estimated to be �1020 G. This estimate was based in a
field-independent CFL pairing energy �2��CFL

A �2. Con-
sidering that in the MCFL phase �B

A increases with the
field, it is natural to expect that the critical field will be
even larger than 1020 G. Since such extremely strong fields
will surpass all the energy scales of the system, the quark
infrared dynamics will become predominant, and the phe-
nomenon of magnetic catalysis of chiral symmetry break-
ing [14] will be activated, producing a phase with quark-
antiquark condensates but no quark-quark condensate.
These two phases will have to be connected by a phase
transition, as they have different number of Goldstone
bosons due to the breaking of baryon symmetry, which
only occurs in the superconducting phase.

Let us stress that in this work we have not considered the
implications of finite quark masses. This, together with a
careful study of the effects of the magnetic field in the low
energy physics, in transport properties, or in neutrino
dynamics will be the subject of future investigations.

In conclusion, we have found that a magnetic field leads
to the formation of a new color-flavor locking phase,
characterized by a smaller vector symmetry than the CFL
phase. The essential role of the penetrating magnetic field
is to modify the density of states of charged quarks on the
Fermi surface. To better understand the relevance of this
new phase in astrophysics we need to explore the region of
moderately strong magnetic fields ~e ~B<�2=2, which re-
quires us to carry out a numerical study of the gap equa-
tions including the effect of higher Landau levels. Because
the total density of states around the Fermi surface for
15200
charged particles does not vary monotonically with the
number of Landau levels, we still expect to find a mean-
ingful splitting of the gaps at these fields and therefore a
qualitative separation between the CFL and MCFL phases.
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