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Cosmological Solutions in Macroscopic Gravity
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In the macroscopic gravity approach to the averaging problem in cosmology, the Einstein field
equations on cosmological scales are modified by appropriate gravitational correlation terms. We present
exact cosmological solutions to the equations of macroscopic gravity for a spatially homogeneous and
isotropic macroscopic space-time and find that the correlation tensor is of the form of a spatial curvature
term. We briefly discuss the physical consequences of these results.

DOI: 10.1103/PhysRevLett.95.151102 PACS numbers: 98.80.Jk, 04.50.+h
The averaging problem in cosmology and general rela-
tivity (GR) is of fundamental importance [1]. An averaging
of inhomogeneous space-times can lead to dynamical be-
havior different from the spatially homogeneous and iso-
tropic Friedmann-Lemaitre-Robertson-Walker (FLRW)
model; in particular, the expansion rate may be signifi-
cantly affected [2]. This motivated the macroscopic gravity
(MG) approach to the averaging problem in cosmology, in
which the Einstein equations on the cosmological scales
with a continuous distribution of cosmological matter are
modified by appropriate gravitational correlation correc-
tion terms [3].

There are a number of approaches to the averaging
problem [2,4]. The perturbative approach involves averag-
ing the perturbed Einstein equations; however, a perturba-
tion analysis cannot provide any information about an
averaged geometry. In the space-time or space volume
averaging approach tensors, and in some cases only scalar
quantities, are averaged; this procedure is not generally
covariant, and hence the results are somewhat limited and
the conclusions unreliable. In all of these approaches, in
analogy with Lorentz’s approach to electrodynamics, an
averaging of the Einstein equations is performed to obtain
the averaged field equations. But to date, with the excep-
tion of the MG approach [3], no proposal has been made
about the correlation functions which should inevitably
emerge in an averaging of a nonlinear theory (without
which the averaging of the Einstein equations simply
amount to definitions of the new averaged terms).

In particular, approaches to describe FLRW cosmolo-
gies as locally inhomogeneous cosmological models uti-
lize a 3� 1 cosmological space-time splitting with
noncovariant space volume averaging. The size of the
averaging space regions has been tacitly assumed to be
’100 Mpc, or of the order of the inverse Hubble scale.
Athough many of the approaches have indicated that
Friedmann’s equation gets modified by the appearance of
an effective averaged energy density, there is no definite
consensus as of yet on the physical status and mathematical
reliability of this important prediction on the possible dy-
namical law of the Universe evolution on its largest scales.
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The space-time averaging procedure adopted in MG is
based on the concept of Lie dragging of averaging regions,
which makes it valid for any differentiable manifold with a
volume n form, and it has been proven to exist on arbitrary
Riemannian space-times with well-defined local averaged
properties [3]. Averaging of the structure equations for the
geometry of GR brings about the structure equations for
the averaged (macroscopic) geometry and the definitions
and the properties of the correlation tensors. The averaged
Einstein equations for the macroscopic metric tensor to-
gether with a set of algebraic and differential equations for
the correlation tensors become a coupled system of the
macroscopic field equations for the unknown macroscopic
metric, correlation tensor, and other objects of the theory.
The averaged Einstein equations can always be written in
the form of the Einstein equations for the macroscopic
metric tensor when the correlation terms are moved to
the right-hand side of the averaged Einstein equations to
serve as the geometric modification to the averaged (mac-
roscopic) matter energy-momentum tensor. Thus, MG is a
geometric field theory with a built-in scale which is non-
perturbative and provides us with both the geometry under-
lying the macroscopic gravitational phenomena and the
macroscopic (averaged) field equations [3]. The scale is
given by the size of the space-time averaging regions
which is a free parameter of the theory. When applied to
study cosmological evolution, the theory of MG can be
regarded as a long-distance modification of GR.

A procedure for solving the system of MG equations
with one connection correlation tensor Z���

�
�� (in brief

Z) is as follows. [The MG equations are described in detail
in [3,5] (wherein all terms are defined); in order to make
this Letter as easy to read as possible, we shall simply
present the necessary details in a brief and compact fash-
ion.] The line element for the macroscopic geometry is
given in terms of the macroscopic metric tensor G��; its
Levi-Civita connection coefficients and the Riemannian
curvature tensor M�

��� can be calculated in terms of the
unknown metric functions. The components of Z, perhaps
with an assumption on their functional form based on
symmetries and physical conditions, can then be expressed
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in terms of the metric functions. The integrability condi-
tions for the differential equations (the ZM equations)
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where an underbar denotes that index is not included in the
antisymmetrization, are solved. The system of differential
equations for Z (the dZ equations)

Z����
�
��k	� � 0; (2)

where ‘‘k’’ denotes covariant differentiation with respect
to the macroscopic metric, are then solved. Finally,
the quadratic algebraic conditions for Z����

�
��� (the ZZ

equations)
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are solved. Upon determining the components of Z, the
gravitational stress-energy tensor T��grav�

� of MG, defined
by

�
Z���� �

1

2
���Q��

�
�g�� � ��T��grav�

� ; (4)

is determined (where Z���� � 2Z���
�
��, Z���� � Q��).

The averaged Einstein equations

G��M�� �
1

2
���G

��M�� � ��ht
��micro�
� i � �T��grav�

�

(5)

are then solved for the unknown metric functions, assum-
ing (for example) that the averaged microscopic stress-
energy tensor ht��micro�

� i is of a perfect fluid form. [The
macroscopic field equations (5) are written in the form of
the Einstein equations of GR, with a ‘‘modified’’ stress-
energy tensor consisting of the averaged microscopic
stress-energy tensor ht��micro�

� i and an additional effective

stress-energy tensor T��grav�
� (4) arising from the correlation

tensor Z [3,5].]
Given a macroscopic metric G��, the calculational pro-

cedure is to seek a solution Z satisfying the ZM, dZ, and
ZZ equations. By making extensive use of GRTENSORII,

MAPLE [6], the first step is to define the connection corre-
lation tensor with its rank and symmetries. In practice, a
file is created for a rank 6 tensor Z possessing no symme-
tries; the symmetries on Z are then imposed by solving
systems of algebraic equations. The choice of metric at this
stage is irrelevant. Although solving the ZZ equations does
not involve the metric, we have found it convenient to solve
this equation last; since it is quadratic, many solution sets
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will arise and only after Z has been constrained either by
ZM and dZ, or any other additional assumptions on Z, is
there a possibility of solving ZZ computationally. To each
solution set of ZZ there will be a corresponding T��grav�

� . A
typical worksheet begins with the loading of a macroscopic
metric and the connection correlation tensor. It is useful to
have a set of the independent components of Z. This is
easily done by looping through all components of Z. We
begin by defining a rank 8 tensor corresponding to the ZM
equations. These algebraic equations are then solved for
the independent components of Z and the solutions are
substituted back into Z. It is easily checked that Z now
satisfies the ZM equations. Next we define a rank 7 tensor
corresponding to the dZ equations. If a solution of these
differential equations for the independent components of Z
can be found, it can then be substituted back into the Z
tensor. In most of the cases considered, we have found no
great computational difficulty in solving the ZM and dZ
equations using MAPLE. At this point the number of inde-
pendent components of Z left unspecified by the dZ equa-
tions can be computed. To define the ZZ equations we
define six rank 6 tensors, each corresponding to a term of
the ZZ equations fully contracted with the Levi-Civita
tensor over the antisymmetrized indices. These tensors
are calculated individually, then summed to give a rank 6
tensor corresponding to the ZZ equations. As above, this
tensor can be calculated and its components stored in a set.
We then solve for the remaining independent components
of Z. Since multiple solutions will be obtained, it is neces-
sary to define and calculate multiple copies of the Z tensor.
There are many variations to the outline given above,
depending on the form of the metric and the assumptions
on the components of Z. For example, assuming that the
components of Z are all constants in an appropriate form,
the ZM and dZ equations amount to algebraic equations,
thus eliminating the need to solve any differential equa-
tions. Full details of all of the experiments and techniques
are given in [5].

Let us consider a flat spatially homogeneous, isotropic
macroscopic FLRW space-time with conformal time �:

ds2 � a2�����d�2 � dx2 � dy2 � dz2�; (6)

where d� � a�1�t�dt with a cosmological (coordinate)
time t and a2�t� is an unknown function of the scale factor.
It is necessary to make an ansatz for the functional form of
the components of Z on the basis of symmetries and
physical conditions of the macroscopic geometry. The
most natural condition on Z compatible with the structure
of macroscopic space-time (6) is to require all of its
components be constant:

Z���
�
�� � const: (7)

Upon solving the ZM and dZ equations, using a Maple
built-in algebraic system solver and requiring real-valued
solutions, we are left with a number of independent com-
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ponents in Z (see [5] for details). Solving the ZZ equations
then yields a number of solutions (with a small number of
nonvanishing real-valued components of Z), each of which
gives Tx�grav�

x �Ty�grav�
y �Tz�grav�

z � 1
3T

t�grav�
t , where Tx�grav�

x �

��=a2�t� and � is a linear combination of the nonzero
constant components of Z (different combinations corre-
sponding to different solutions; e.g., � � �12Z3

23
3

32 in
three particular exact solutions with a single independent
component of Z). In all cases the MG stress-energy tensor
has the form of a perfect fluid with 
c � �=�a2�t� and
pc � �
c=3 (i.e., � � 2=3). After transforming from con-
formal time � to cosmological time t, we obtain the
averaged Einstein equations
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(8)

Thus, the averaged Einstein equations for a flat spatially
homogeneous, isotropic macroscopic space-time geometry
has the form of the Einstein equations of GR for a open
spatially homogeneous, isotropic space-time geometry
(where the correlation tensor is of the form of a spatial
curvature term, with k � ��=3�). [In principle, without
imposing any further conditions, the curvature can be
positive or negative. However, if the energy density 
c of
the MG field is positive, then tr�T��grav�

� � � �2�=a2�t�< 0

(i.e., T�grav� is a negative curvature term), which means
from the physical point of view that the macroscopic gravi-
tational energy is the binding energy of the Universe.] In all
cases (i.e., calculations in which different assumptions on
the form of Z are made), solutions always give rise to a
spatial curvature term. Indeed, assuming only spatial cor-
relations (i.e., assuming that all components of Z with at
least one t index must vanish), it can be shown that T�grav�

must be of the form of spatial curvature [5]. This is the
main result of this Letter; namely, for a flat FLRW geome-
try the MG correlations are of the form of a spatial
curvature tensor term. In further experimentation, in some
nonflat spatially homogeneous, isotropic macroscopic
models we also found evidence that T�grav� is of the form
of a curvature term; this will be studied in more detail
in [5].

There are a number of important physical consequences
of these results. In MG, in a flat spatially homogeneous and
isotropic macroscopic space-time, the correlation tensor
and the averaged cosmological matter distribution taken
as a perfect fluid have the cosmological dynamical equa-
tions (8). This implies that the macroscopic (averaged)
cosmological evolution in a flat universe is governed by
the dynamical evolution equations for an open universe,
which makes it necessary to reconsider the standard cos-
mological interpretation and the treatment of the observa-
tional data. If the underlying macroscopic space-time has
positive spatial curvature (as suggested by recent observa-
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tions), then we would obtain a cosmological model which
is closed on local scales, but as a result of the MG corre-
lations behaves dynamically on macroscopically large
scales as a flat model, which might have considerable
physical implications. Finally, if positive spatial curvature
correlations are permitted, then cosmological models
which act as an Einstein static model on the largest scales
are possible even for models with zero or negative curva-
ture on small scales. Thus we have the interesting, but
highly conjectural, possibility that since at late times
(and on the largest scale) T�grav� (a curvature term) will
dominate the dynamics, the correlations might stabilize the
Einstein static model. This may be of potential importance
since current observations perhaps indicate that the uni-
verse is marginally closed and due to the current interest in
the emergent universe scenario in which the universe is
positively curved and initially in a past eternal Einstein
static state that eventually evolves into a subsequent infla-
tionary phase [7].

Let us discuss the potential significance of these results
in a little more detail. Observations are usually interpreted
as showing that the Universe is flat, currently accelerating
and indicating the existence of dark matter and dark energy
[8]. As noted earlier, inhomogeneities can affect the dy-
namics and may significantly affect the expansion rate [2].
It has been suggested that backreaction from inhomogene-
ities smaller than the Hubble scale could explain the ap-
parently observed accelerated expansion of the Universe
today or negate the need for dark energy in a realistic
inhomogeneous universe. Indeed, it has been argued that
the cosmological constant can be reduced to a very small
value by backreaction effects in an expanding space-time
[9]. For example, gravitational waves propagating in a
background space-time will affect the dynamics of this
background. The backreaction for scalar gravitational per-
turbations, which can be described by an effective energy-
momentum tensor, was studied in [10]. It was found that
the equation of state of the dominant infrared contribution
to the energy-momentum tensor which describes backre-
action can take the form of a negative cosmological con-
stant. This has led to the speculation that gravitational
backreaction may lead to a dynamical mechanism for the
cancellation of a bare cosmological constant. However, it is
not clear whether this approach is consistent and whether
the effects are indeed physical. For example, averaging
over a fixed time slice, the spatially averaged value of the
expansion will not be the same as the expansion rate at the
averaged value of time, because of the nonlinear nature of
the expansion.

What is needed is a correct averaging procedure that
does not depend on any assumptions regarding the nature
of the perturbations. The MG method described here is an
exact approach; no approximations have been made (i.e.,
no higher order terms have been dropped). In this approach
inhomogeneities affect the dynamics on large scales
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through correction terms (and, in this sense, is different to
backreaction effects which are pure nonlinear effects of the
gravitational field via perturbations). Moreover, averaging
entails a scale dependence, which depends on the spatial
scale over which averages are taken. This averaging scale
is assumed to be of the order of the inverse Hubble scale,
and thus any terms (e.g., a cosmological constant or a
curvature term) appearing in the correlation tensor must
be related to the inverse Hubble scale. For example, the
natural length scale of any cosmological constant intro-
duced by averaging would be of the order of the inverse
Hubble scale squared. This would therefore give a natural
possible resolution of the coincidence problem [9].
Unfortunately, to date we have not been able to solve the
MG equations to find a solution with correction terms that
may account for the present-day acceleration. However, a
spatial curvature correction arises naturally and, as noted
earlier, correction terms change the interpretation of ob-
servations so that they need to be accounted for carefully to
determine if they may be consistent with a decelerating
universe.

In addition, superhorizon fluctuations (whose origin is in
inflation) affect classical dynamics as measured by local
observers (since perturbations affect the expansion rate in a
universe with a flat FLRW background). Recently it has
been proposed that superhorizon perturbations could ex-
plain the present-day accelerated acceleration [11].
However, in [12] it was claimed that the effect proposed
in [11] amounts to a simple renormalization of the spatial
curvature (essentially a new scale factor can be defined so
that the metric looks like a FLRW metric with a curvature
term), and thus cannot account for negative deceleration;
indeed, a proper accounting of all perturbative terms as
well as more general arguments suggest that the super-
horizon modes do not lead to acceleration [13]. In further
work [14] the relation between backreaction (and espe-
cially the effective scale factor presented in [11]) and
spatial curvature using exact equations which do not rely
on perturbation theory was studied in more detail; it was
found that although the effect does not simply reduce to
spatial curvature, acceleration results but is accompanied
by growth of spatial curvature to an extent that is likely to
15110
be incompatible with the cosmic microwave background
data.
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