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We propose a family of entanglement witnesses and corresponding positive maps that are not
completely positive based on local orthogonal observables. As applications the entanglement witness
of a 3� 3 bound entangled state [P. Horodecki, Phys. Lett. A 232, 333 (1997)] is explicitly constructed
and a family of d� d bound entangled states is introduced, whose entanglement can be detected by
permuting local orthogonal observables. The proposed criterion of separability can be physically realized
by measuring a Hermitian correlation matrix of local orthogonal observables.
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Intoduction.—Entangled states are valuable resources
for quantum computation and communication. However
the boundary between the entangled states and the sepa-
rable states, states that can be prepared by means of local
operations and classical communications [1], is still not
well characterized. Entanglement detection turns out to be
a rather tantalizing problem.

There have been many approaches to the problem such
as the partial transposition criterion [2,3], the realignment
criterion [4,5], the symmetric extension criterion [6,7], and
the equation-solving method [8], to name a few. Many
criteria such as the partial transposition criterion and the
reduction criterion arise from positive maps that are not
completely positive (non-CP). A state is separable if and
only if the state keeps its positivity under all non-CP maps
[3]. The entangled states with positive partial transposition
(PPT) belong to bound entangled states [9] while the states
violating the reduction criterion can be distilled, or are free
entangled [10]. The non-CP maps are not very easy to find
and they are not physically realizable. There are also some
physical approaches including Bell inequalities [11–13],
local uncertainty relationships [14–16], and entanglement
witnesses [10,12]. A 3-setting Bell-like inequality is found
to be a sufficient and necessary condition for the 2� 2
system [14]. A local uncertainty relation is found to be
violated by bound entangled states [15,16].

In this Letter we shall at first construct a family of en-
tanglement witnesses, from which a generalization of the
reduction criterion can be derived, based on local orthogo-
nal observables. Then we apply our criterion of separabil-
ity to several bound entangled states, including a family of
bound entangled states where the criterion is sufficient and
necessary. Finally, we reformulate the criterion in terms of
physically measurable quantities, namely, Hermitian cor-
relation matrices.

Local orthogonal observables.—We consider a d� d
system, a bipartite system with two d-level subsystems
labeled by A and B, whose Hilbert space is spanned by
jm; ni � jmi � jni, �m; n � 1; 2; . . . ; d�. For each system a
complete set of local orthogonal observables (LOOs) is a
set of d2 observables A��� � 1; 2; . . . ; d2� of this system
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satisfying orthogonal relations

Tr �A�A�� � ���; ��; � � 1; 2; . . . ; d2�: (1)

The set of LOOs is complete in two senses. First, they form
an orthonormal basis for all the operators in the Hilbert
space of a d-level system. For example, a density matrix %A
may have an expansion %A �

P
� Tr�%AA��A�. Second,

d2 states jA�i � A�j�i form an orthonormal basis for the
composite system, where j�i �

P
mjm;mi and A� act on

the first subsystem.
In the case of qubits, a typical complete set of LOOs can

be fI; �x; �y; �zg=
���
2
p

. For later use, we define a standard
complete set of LOOs f��g � f�m � jmihmj; �

�
mng

�m; n � 1; 2; . . . ; d� where

��mn �
jmihnj � jnihmj���

2
p �m< n�; (2a)

�	mn �
jmihnj 	 jnihmj

i
���
2
p �m< n�: (2b)

As testing observables �m stand for 2-outcome tests while
the rest of the observables represent 3-outcome tests �d 

3�. In this standard basis, an arbitrary complete set of LOOs
is characterized by an orthogonal d2 � d2 real matrix O
such that

�o� �
Xd2

��1

O����: (3)

Specially, f�u� � u��u
yg with u being unitary is also a

complete set of LOOs. Not all LOOs can be generated by
unitary transformations. For example, there is no u such
that �T� � �u�, where �T� denotes the transposition of the
standard LOOs.

Entanglement witness.—Entanglement witness (EW) is
an observable of the composite system that has (i) non-
negative expectation values in all separable states and
(ii) at least one negative eigenvalue. We call an observable
a candidate of EW if it satisfies the condition (i).

If we choose an arbitrary set of LOOs f�o�g for system A
and the transposition of the standard set f�T�g for system B,
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then the observable defined as

EO � I � I 	
Xd2

��1

�o� � �T� (4)

is an EW candidate for all orthogonal O. This is because in
any product state � � %1 � %2 we have

Tr��EO� � 1	
X
�

h�o�i1h�T�i2


 1	
������������������X
�

h�o�i21

s ������������������X
�

h�T�i22

s

� 1	
���������������������
Tr%2

1 Tr%2
2

q

 0 (5)

by using the Cauchy inequality, the orthogonality and
completeness of the LOOs. If the complete set of LOOs
is so chosen that the EW candidate EO does possess at least
one negative eigenvalue then we obtain an EW. From the
proof of the inequality above it is obvious that instead ofO
being orthogonal the condition OOT � 1 is enough for the
construction of an EW candidate. We shall encounter this
kind of EW in the following example.

It should be noted that the transposition in the definition
of our EW as in Eq. (4) is not crucial since the orthogonalO
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matrix is arbitrary. However, as we see later, the appear-
ance of the partial transposition will render the positive
map corresponding to our EW into a simpler form.
Furthermore, under the operator basis f�� � �T�g the den-
sity matrix of the maximally entangled state j�i is propor-
tional to the identity matrix.

As an application, we shall construct explicitly an EW
for the 3� 3 bound entangled state introduced in Ref. [17].
In the basis fjm; nig arranged in the ordering 3�m	 1� � n,
the density matrix reads

�a�
1

1� 8a

a 0 0 0 a 0 0 0 a
0 a 0 0 0 0 0 0 0
0 0 a 0 0 0 0 0 0
0 0 0 a 0 0 0 0 0
a 0 0 0 a 0 0 0 a
0 0 0 0 0 a 0 0 0
0 0 0 0 0 0 1�a

2 0
���������
1	a2
p

2
0 0 0 0 0 0 0 a 0
a 0 0 0 a 0

���������
1	a2
p

2 0 1�a
2

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
: (6)

The state �a has PPT while being entangled for all 0<
a< 1. At first we choose special sets of LOOs fA�g and
fB�g for systems A and B, respectively, as follows:
A �
1���p �� �� �� ��B ; A �

1���p �� 	� �; B �
1���p �� 	� �; A �

1�2a���p �2� 	� 	� �	

�������������������
3�1	a2�

p
�� ;
1

3
1 2 3 1 2

2
1 2 2

2
3 1 3

6�2�a�
3 1 2 2�a 13

B3�
1���
6
p ��1��3	2�2�; A4�

1�2a
2�a

��13�

�������������
1	a2
p

���
2
p
�2�a�

�2�3	�1	�2�; B4���13; A5��	13�B5;

A6��
�
12�B6; A7��

	
12�B7; A8��

�
23�B8; A9��

	
23�B9: (7)
We note that A1 � B1 is proportional to the identity matrix
and other 8 observables Bi �i � 2; 3; . . . ; 9� of system B are
exactly those 8 Gell-Mann matrices, and observables Ai
�i � 2; 3; . . . ; 9� of system A are Gell-Mann matrices with
an interchanging of energy levels 2 and 3 and a certain
rotation. A similar choice of local observables has also
been used to detect the entanglement of �a by a local
uncertainty relationship [15]. Then we expand the density
matrix �a in the basis fA� � BT�g with coefficients ��� �
Tr��aA� � BT��. In fact the LOOs Eq. (7) are designed to
make

P
���� � 1. Now we define a real matrix M with

only the following elements

M�� �
1��������������

1� n2
p ; M1� � 	M�1 �

n���������������
1� n2
p (8)

nonzero, where the vector defined by n� � �1� 	 ��1 with
� � 2; . . . ; 9 has a nonzero norm

n2 �
X9

��2

n2
� �

�1	 a�a2

�2� a��1� 8a�2
: (9)

Obviously, we have MTM � 1. So we have an EW candi-
date

Ea � I � I 	
Xd2

�;��1

M��A� � B
T
�: (10)
Its expectation values in separable states are all non-
negative while its expectation value in the state �a reads

Tr ��aEa� � 1	
��������������
1� n2

p
< 0 (11)

for all 0< a< 1. Therefore we obtain explicitly an EW for
the state �a. Of course the entanglement of �a can also be
detected by the non-CP map corresponding to the EW Ea.
O-reduction criterion.—To each EW candidate EO we

can associate a positive map through the Jamiołkowski
isomorphism [18] as follows

O �%� � TrB�I � %TEO� � I Tr%	
X
�

h��i%�o�

� I Tr%	 %o: (12)

Thus we have a separability criterion: if a state � of the
composite system is separable then

O � I��� � TrA�	 �
oA 
 0; (13)

for all orthogonal O, where

�oA �
Xd2

�;��1

h�� � �
T
�i��

o
� � �

T
�: (14)

Not all choices of O will result in a non-CP map. For
example if the orthogonal O is generated by the trans-
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FIG. 1. The states in the region delineated by the curve a2ad 

a2

1 have PPT, the states within the triangle inside the curve are
separable, and the states outside the curve are free entangled
with the states in the triangle outside the curve violating the
reduction criterion. Therefore the states within the gray-colored
region are bound entangled states.
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position, then the resulting map is completely positive. If
the orthogonal O is generated by a unitary transformation,
then we obtain the reduction map I Tr%	 %. Thus we refer
to the above separability criterion asO-reduction criterion.
It turns out that it is exactly the LOOs which cannot be
generated by unitary transformations that are crucial to the
detection of bound entanglement.

As is well known the reduction map is a decomposable
non-CP map, i.e., a composition of the transposition and a
completely positive map. The construction of indecompos-
able non-CP maps is somewhat involved, e.g., based on
some maximization or minimization procedures [19], or
dependent on some special states [20]. Here we shall see
that some simple non-CP maps induced by the permutation
of LOOs are not decomposable, i.e., they can be used to
detect bound entangled states with PPT.

We consider an arbitrary permutation �� � ����� of the
standard LOOs. In the state j�i (not normalized) the
expectation value of the induced EW candidate

E� � I � I 	
Xd2

��1

����� � �
T
� (15)

reads d	
P
� Tr���������, which is negative if the per-

mutation leaves more than d observables unchanged; i.e.,
map � � ���� has at least d� 1 fix points. In this case
we obtain an EW and a non-CP map I Tr%	 %�.

More specifically we consider a permutation among d
observables �m in the standard set of LOOs �� while all
other LOOs remain unchanged. This permutation of LOOs
corresponds to a permutation of the diagonal elements of
the density matrix in the basis fjmig. Since there are d2 	
d > d�d 
 3� LOOs left unchanged, the positive map
I Tr%	 %� is not completely positive.

In the following we shall demonstrate the detection
power of these non-CP maps for some entangled states
with PPT. This, on the other hand, proves that these maps
are indecomposable non-CP positive maps. Let us intro-
duce a state of d-level bipartite system as follows:

� �
a1

d
j�ih�j �

Xd
k�1;i�2

ai
d
�k � �k�i	1; (16)

where the positive numbers ai satisfy
P
iai � 1. In the case

of d�3 and a1 � 2=7 the state has been discussed in
[6,21]. It is not difficult to check that (i) If ai 
 a1�i �

1� the state is separable; (ii) If ai�1ad	i�1 
 a2
1 then the

state is a PPT state. Here the conventions �d�k � �k and
ad�k � ak have been used.

Let us consider d	 1 cyclic permutations of the diago-
nal elements according to rules �l�m� � �m� l� mod
d�l � 1; 2; . . . ; d	 1�. Applying these permutations to
the first subsystem we obtain

��
l
A � ��

1

d

Xd
k;i�1

�ai	l 	 ai��k � �k�i	1: (17)

By applying the O-reduction criteria, i.e., if the state is
15050
separable then TrA�	�
�lA
0, we have to require 1	ai


�d	1�a1 for all i � 1; 2; . . . ; d. Now we consider a special
case where ai � a1 for i � 2; d. The constraints on the
separable states from O-reduction criterion become a2 

a1 and ad 
 a1. In this special case the O-reduction crite-
rion is a necessary and sufficient one for the separability.
As a result we can picture the entanglement of the state in
Eq. (16) according to its independent parameters a1 and a2

in a diagram, Fig. 1.
Hermitian correlation matrix.—One dilemma of entan-

glement detection is that the entanglement can be detected
only by non-CP maps, but non-CP maps are physically not
realizable. Now we realize the O-reduction criterion by
measuring the correlation of LOOs.

Let us take LOOs f�o�g as testing observables for system
A and LOOs f�T�g as testing observables for system B.
Their correlations behave differently for separable states
and entangled states. For example the EW candidate EO
imposes a constraint on the correlations of LOOs in a
separable state � as

Xd2

��1

h�o� � �T�i� � 1: (18)

If the inequality above is maximized over all possible or-
thogonal O we have Tr

���������
TTT
p

� 1 where T is a d2 � d2

real correlation matrix with elements T�� � h�� � �T�i�.
This is equivalent to the realignment criterion for
separability, as soon we notice that the realigned ma-
trix ~� defined by hm; nj~�jk; li � hm; kj�jn; li satisfies
~� �

P
��T��j��ih��j. Therefore, the realignment crite-

rion is reformulated in terms of the correlation function
on the left-hand side of inequality equation (18).

The inequality equation (18) also holds true for the
correlations of more general local observables �o� where
O satisfies OOT � 1. However, if the inequality equa-
tion (18) for any orthogonal O fails to identify the entan-
glement of a state then the inequality equation (18) for any
4-3
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nonorthogonal O fails too since jTr�TO�j � Tr
���������
TTT
p

as
long as OOT � 1.

There are limitations of inequality equation (18), e.g.,
there exist entangled states in 2� 2 systems that cannot be
detected by the realignment criterion [4]. However, they
can be detected by the O-reduction criterion because the
latter includes the reduction criterion as a special case. In
fact, the realignment criterion is absolutely weaker than the
O-reduction criterion, as can be seen from the fact that

h�jO � I���j�i � 1	 Tr�TOT�; 8O: (19)

There exist cases in which jTr�TO�j � 1 for all orthogonal
O, but not all operators O � I��� are positive.

To achieve a physical detection of entanglement more
efficient than Eq. (18), one has to examine the correlations
of local observables more closely. In stead of a single
function of correlation function as in the left-hand side of
inequality equation (18), one can build a d� d Hermitian
correlation matrix X �

P
� Tr�X����� for the correlations

of LOOs f�o�g and f�u� � u��u
yg in state � as follows:

Tr�X�m� � h�I 	 �om� � �umi�; (20a)

Tr�X��mn� �
	1���

2
p h��omn � �

�u
mn 	 �

	o
mn � �

	u
mni�; (20b)

Tr�X�	mn� �
	1���

2
p h��omn � �

	u
mn � �

	o
mn � �

�u
mni�: (20c)

Now we are able to present our main result:
Theorem.—If the state � is separable then the Hermitian

correlation matrix is positive, i.e., X 
 0, for arbitrary
unitary u and orthogonal O, which is equivalent to the
O-reduction criterion O � I��� 
 0 for all orthogonal O.

Proof.—It suffices to prove the second part of the theo-
rem. We introduce another d-level system C as an ancilla
and define an unnormalized state j�iABC �

P
mjm;m;mi,

then we have the following relation between the Hermitian
correlation matrix defined above and the O-reduction map

X � TrAB�O
T �U���j�ih�jABC�; (21)

where OT�%� � I Tr%	 %o
T

and U��� � uy�u. It is ob-
vious that if the O-reduction criterion is satisfied then
X 
 0. On the other hand, X 
 0 means that for any real
sm we have

P
mnsmsnXmn 
 0. This ensures that O � I���

is non-negative in any pure state that is related toP
msmjm;mi by local unitary transformations, which in

fact can be any pure state. Thus O � I��� 
 0 if X 
 0
for all unitary u and orthogonal O.

Now let us look at two important special cases. First, the
positivity of the Hermitian correlation matrix X 
 0 means
that X is positive in any state, especially in the state

P
mjmi.

As a result we obtain Eq. (18). Second, if d � 2 then 2� 2
correlation matrix X 
 0 is equivalent to the inequality
derived in [14]. That is, X 
 0 is a sufficient and necessary
condition for the 2� 2 case.

Summary and discussion.—Through local orthogonal
observables we have constructed effective entanglement
15050
witnesses and non-CP maps for states with positive partial
transposition. A family of bound entangled states can be
well characterized by the non-CP maps induced by the
permutation of local orthogonal observables. Finally, these
physically not implementable maps can be realized physi-
cally by measuring the Hermitian correlation matrix,
whose negative eigenvalue (if it exists) provides a signature
of entanglement.

Our construction of the entanglement witnesses distin-
guishes itself in that it is based on the local uncertainty
relationship among local orthogonal observables and is
state independent, while previous constructions of en-
tanglement witnesses, apart from few simple cases, always
involve some extremization procedures and are state de-
pendent. The detailed characterization of the entangled
states that can be detected by our O-reduction criterion is
still under investigation.

Y. S. acknowledges the financial support of National
Natural Science Foundation of China (Grant
No. 90303023). N. L. gratefully thanks P. T. Leung for his
invaluable support and encouragement, and acknowledges
the support of the State Education Ministry of China and
the Chinese Academy of Sciences.
4-4
[1] R. F. Werner, Phys. Rev. A 40, 4277 (1989).
[2] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[3] M. Horodecki, P. Horodecki, and R. Horodecki, Phys.

Lett. A 223, 1 (1996).
[4] K. Chen and L. A. Wu, Quantum Inf. Comput. 3, 193

(2003).
[5] O. Rudolph, J. Phys. A 33, 3951 (2000).
[6] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Phys.

Rev. Lett. 88, 187904 (2002).
[7] A. C. Doherty, P. A. Parrilo, and F. M. Spedalieri, Phys.

Rev. A 69, 022308 (2004).
[8] S.-J. Wu, X.-M. Chen, and Y.-D. Zhang, Phys. Lett. A 275,

244 (2000).
[9] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev.

Lett. 80, 5239 (1998).
[10] M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4206

(1999).
[11] J. S. Bell, Speakable and Unspeakable in Quantum

Mechanics (Cambridge University Press, Cambridge,
England, 1987).

[12] B. M. Terhal, Phys. Lett. A 271, 319 (2000).
[13] S. Yu, Z.-B Chen, J.-W. Pan, and Y.-D Zhang, Phys. Rev.

Lett. 90, 080401 (2003).
[14] S. Yu, J.-W. Pan, Z.-B Chen, and Y.-D Zhang, Phys. Rev.

Lett. 91, 217903 (2003).
[15] H. F. Hofmann, Phys. Rev. A 68, 034307 (2003).
[16] O. Gühne, Phys. Rev. Lett. 92, 117903 (2004).
[17] P. Horodecki, Phys. Lett. A 232, 333 (1997).
[18] A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972).
[19] M. Lewenstein, B. Kraus, P. Horodecki, and J. I. Cirac,

Phys. Rev. A 63, 044304 (2001).
[20] K. Chen and L. A. Wu, Phys. Rev. A 69, 022312 (2004).
[21] P. Horodecki, M. Horodecki, and R. Horodecki, Phys. Rev.

Lett. 82, 1056 (1999).


