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Fixed-Point Quantum Search
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The quantum search algorithm consists of an iterative sequence of selective inversions and diffusion
type operations, as a result of which it is able to find a state with desired properties (target state) in an
unsorted database of size N in only

����
N
p

queries. This is achieved by designing the iterative trans-
formations in a way that each iteration results in a small rotation of the state vector in a two-dimensional
Hilbert space that includes the target state; if we choose the right number of iterative steps, we will stop
just at the target state. This Letter shows that by replacing the selective inversions by selective phase shifts
of �

3 , the algorithm preferentially converges to the target state irrespective of the step size or number of
iterations. This feature leads to robust search algorithms and also to new schemes for quantum control and
error correction.
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FIG. 1. In amplitude amplification (left), the state vector over-
shoots the target state; in the algorithm of this Letter (right), the
state vector always moves towards the target.
I. Introduction.—‘‘Quantum searching is like cooking a
souffle. You put the state obtained by quantum parallelism
in a ‘quantum oven’ and let the desired answer rise slowly.
Success is almost guaranteed if you open the oven at just
the right time. But the souffle is very likely to fall—the
amplitude of the correct answer drops to zero—if you open
the oven too early. Furthermore, the souffle could burn if
you overcook it; strangely, the amplitude of the desired
state starts shrinking after reaching its maximum.’’ [1]

Search algorithms can be described as a rotation of the
state vector in two-dimensional Hilbert space defined by
the initial (s) and the target (t) vectors. As we describe
later, any iterative quantum procedure has to be an iterative
rotation in state space where each iteration causes the same
amount of rotation. In the original quantum search algo-
rithm, the state vector uniformly goes from the initial to the
target, and unless we stop when it is right at the target, it
will drift away. For many applications, including an un-
sorted database search, this leads to a square-root speedup
over the corresponding classical algorithm. One limitation
of these algorithms is that, to perform optimally, they need
precise knowledge of certain problem parameters, e.g., the
number of target states.

This Letter shows that by replacing the selective phase
inversions in quantum search by suitable phase shifts we
can get an algorithm that always gives an improvement. As
shown in Fig. 1, when a single iteration derived from any
unitary operator U is applied, the state vector always
moves closer to the target state (Sec. III). By recurring
this basic iteration, we develop an algorithm with multiple
applications of U that converges monotonically to the
target (Sec. IV). This leads to variants of quantum search-
ing that are robust to changes in the parameters (Secs. VI
and VII). Also, this immediately leads to schemes for
reducing certain kinds of errors in quantum computing
(Sec. VIII).

II. A different kind of quantum search.—Consider the
transformation URsUyRtU applied to jsi:
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Rt and Rs denote selective phase shifts of the respective
state(s) by �

3 . Note that if we were to change these phase
shifts from �

3 to �, we would get one iteration of the
amplitude amplification algorithm [2,3].

The next section shows that if U drives the state vector
from a source (s) to a target (t) state with a probability of
�1� ��, i.e., kUtsk

2 � �1� ��, then the transformation (1)
drives the state vector from the source to the same target
state with a probability of �1� �3�. The deviation from the
t state has hence fallen from � to �3.

The striking aspect of this result is that it holds for any
kind of deviation from the t state. Unlike the standard
amplitude amplification algorithm which would greatly
overshoot the target state when � is small (Fig. 1), the
new algorithm will always move towards the target. As
shown in Sec. VI, this can be used to develop algorithms
that are more robust to variations in the problem
parameters.

Connections to control and error correction might al-
ready be evident. Let us say that we are trying to drive a
system from an s state/subspace to a t state/subspace. The
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transformation that we have available for this is U, which
drives it from s to t with a probability kUtsk

2 of �1� ��;
i.e., the probability of error in this transformation is �.
Then the composite transformation URsUyRtU will re-
duce the error to �3.

This technique is applicable whenever the transforma-
tions U, Uy, Rs, and Rt can be implemented. This will be
the case when errors are systematic errors or slowly vary-
ing errors, e.g., due to environmental degradation of some
component. This would not apply to errors that come about
as a result of sudden disturbances from the environment. It
is further assumed that the transformation U can be in-
verted with exactly the same error (illustrated in Sec. VII).
Traditionally, quantum error correction is carried out at the
single qubit level where individual errors are corrected,
each error being corrected in a separate way. With the
machinery of this Letter, errors can be corrected without
ever needing to identify the error syndrome.

III. Analysis.—We analyze the effect of the transforma-
tion URsUyRtU when it is applied to the jsi state. As
mentioned in the previous section, Rt and Rs denote selec-
tive phase shifts of the respective state(s) by �

3 (t for target,
s for source). We show that if kUtsk

2 � �1� ��, then

khtjURsU
yRtUjsik

2 � �1� �3�: (2)

In the rest of this section, the greek alphabet � will be
used to denote �

3 . Start with jsi and apply the operationsU,
Rs, Uy, Rt, and U. Analyzing the effect of the operations,
one by one, just as in the original quantum search algo-
rithm [4], it leads to the following superposition:

Ujsi�ei� � kUtsk
2�ei� � 1�2� � jtiUts�ei� � 1�:

To calculate the deviation of this superposition from jti,
consider the amplitude of the above superposition in non-
target states. The probability is given by the absolute
square of the corresponding amplitude:

�1� kUtsk
2�k�ei� � kUtsk

2�ei� � 1�2�k2:

Substituting kUtsk
2 � �1� ��, the above quantity be-

comes �3.
IV. Recursion.—A few years after the invention of the

quantum search algorithm [4], it was generalized to a much
larger class of applications known as the amplitude ampli-
fication algorithms [2,3]. In these algorithms, the ampli-
tude produced in a particular state t by starting from a state
s and applying a unitary operation U can be amplified by
successively repeating the sequence of operations: Q �
IsUyItU. Here Is and It denote selective inversions of the s
and t states, respectively. For later reference, note that the
amplitude amplification transformation with four It’s is

U�IsU
yItU��IsU

yItU��IsU
yItU��IsU

yItU�: (3)

Unlike the amplitude amplification transformation, it is
not possible to iterate the transformation (1)URsUyRtU to
obtain larger rotations of the state vector. Instead longer
15050
sequences have to be formed by recursion as follows.
Define the transformation Um�1 by the recursion:

Um�1 � UmRsU
y
mRtUm; U0 � U: (4)

Unlike amplitude amplification, it is not simple to write
down the precise operation sequence for Um with large m
without working out the full recursion. Recursion for each
m is different and there is no simple structure. Let us
illustrate this for U2:

U0 � U; U1 � U0RsU
y
0RtU0 � URsUyRtU

U2 � U1RsU
y
1RtU1

� �URsUyRtU�Rs�URsUyRtU�yRt�URsUyRtU�

� U�RsU
yRtU��RsU

yRyt U��R
y
s UyRtU��RsU

yRtU�:

(5)

The corresponding transformation for amplitude amplifi-
cation is (3).

It is straightforward to show that if kUtsk
2 � 1� �, then

kUm;tsk
2 � 1� �3m . Expressed as a function of the number

of queries �qm� kUm;tsk
2 � 1� �2qm�1. The failure proba-

bility hence falls as �2qm�1 after qm queries [5]; this is
similar to a classical algorithm where the probability of
failure falls as �q�1 after q queries (a classical algorithm is
discussed in Sec. VI).

V. Fixed point of algorithm.—First, note that the stan-
dard amplitude amplification algorithm (3) and the phase-
shift algorithm (5), both have some selective operations
performed on the t state, and so from an information
theoretic point of view there is no violation in having fixed
points. However, unitarity would be violated if there was
any kind of accumulation at the target state due to repeti-
tion of the same transformation. This is because any uni-
tary transformation has all eigenvalues of modulus unity
and so any iteration is inherently periodic.

In amplitude amplification (3), exactly the same trans-
formation is repeated and so unitarity does not permit any
fixed point. In the phase-shift algorithm (5), which is
similar to amplitude amplification, the transformation re-
peated in each step is slightly different due to the presence
of each of the four operations Rs; Rt; R

y
s ; R

y
t and it hence

gets around the condition regarding repetition of identical
unitary operators that prevents amplitude amplification
from having a fixed point.

Very recently a novel algorithm for obtaining fixed
points in iterative quantum transformations by periodic
measurements has been discovered [6].

VI. Quantum searching amidst uncertainty.—The origi-
nal quantum search algorithm [4] considered the problem
of finding a marked item in a large unsorted database with
minimum queries to the database. For this type of problem,
it is usually acceptable to reach a point in state space
somewhere in the neighborhood of the solution and spend
a few queries to fine-tune the answer. However, there are
1-2
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FIG. 3 (color online). By setting the six-state ancilla, b, to the
superposition 1��

6
p �j0i� j1i!�j2i!2�j3i!3�j4i!4�j5i!5�,

where ! � exp�� i�
3 �, we get a �

3 phase shift of the states for
which F�x� � 1 relative to those for which F�x� � 0.

FIG. 2. Comparison of the failure probability of the �=3
phase-shift algorithm with a classical algorithm [8,9] when the
fraction of unmarked states (�0) varies between 0 and 0.2.

PRL 95, 150501 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
7 OCTOBER 2005
other important problems where the additional queries
create a significant overhead and need to be minimized,
e.g., when we are limited to a single query and have to find
the answer with a probability approaching unity. One field
in which this type of problem occurs is in pattern recog-
nition and image analysis where each query requires a lot
of signal processing and the consequences of making an
error are catastrophic.

VII. The problem.—Consider the situation where a large
fraction of the items in a database are marked, but the
precise fraction of marked items is not known. The goal is
to find a single marked item with as high a probability as
possible in a single query to the database. For concreteness,
say some unknown fraction �1� �� of the items is marked,
with � uniformly distributed in the range �0; �0� with equal
probability. The search algorithm returns an item; if it is a
marked item the algorithm succeeds, else if it is unmarked,
the algorithm fails. In this Letter we show that the proba-
bility of failure for the new scheme is O��3

0�, whereas that
of the best (possible) classical scheme and that of the best
known quantum schemes are both O��2

0�.
A. Classical algorithm. The best classical algorithm is

to select a random state and see if it is a t state (one query).
If yes, return this state; if no, pick another random state and
return that without any query. The probability of failure is
equal to that of not getting a single t state in two random
picks, i.e., �2. Since � is uniformly distributed in the range

�0; �0�, the overall failure probability is
R
�0
0
�2d�R

�0
0
d�
� 1

3 �
2
0.

B. Quantum searching. Boyer et al. [7] first described
in detail an algorithm that succeeds with probability ap-
proaching 1, regardless of the number of solutions (it is a
classical algorithm that uses quantum searching as a sub-
routine; of course, it can be made fully quantum). The first
quantum algorithm to be able to search an unstructured
database in a single query with a success probability ap-
proaching 1 was given by Mosca [8].

Mosca observed that the quantum counting algorithm of
[7] (based on the original searching algorithm) produces a
solution with probability converging to 1=2. One easily
converts this to an algorithm with probability of success
converging to 1=4. Thus by using this algorithm as a
subroutine in another quantum search, we get success
probability converging to 1. (This appears to be based on
the observation in [7] that an algorithm that succeeds with
probability exactly 1=4 can be amplified to one with suc-
cess probability exactly 1 using only one quantum search
iterate.) In other words, the technique Mosca uses is to take
a search algorithm that succeeds with probability 1=4� X
and then use one quantum search iteration to map it to an
algorithm that succeeds with probability �1� 12X2 �
16X3�. Using this scheme, if the fraction of marked states
of the database is 1� �, one can easily obtain a marked
state with a probability of error of 1� 3

4 �
2 � 1

4 �
3 by means
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of a single quantum query. The overall failure probability

in this case becomes
R
�0
0
��3=4��2��1=4��3�d�R

�0
0
d�

� 1
4 �

2
0 �

1
16 �

3
0.

A recent quantum search based algorithm for this prob-
lem is by Younes et al. [9]. This finds a solution with a
probability of �1� cos���sin2�q�1��

sin2�
� sin2q�

sin2�
�, where q �

number of queries and � � arccos� [Eq. (59) from [9] ].
When q � 1, the success probability becomes �1� ���
�1� 4�2�, and hence the probability of error becomes ��
4�2 � 4�3. The overall failure probability becomesR
�0
0
���4�2�4�3�d�R

�0
0
d�

� �12 �0 �
4
3 �

2
0 � �

3
0�. It should be pointed

out that this algorithm is designed to give its best perform-
ance not around � close to 0 but over a broad range for �
varying between 0.0 and 0.5.

C. New algorithm.—As in the quantum search algo-
rithm, encode the N items in the database in terms of
log2N qubits. The algorithm consists of applying the trans-
formation WR�0WRtW to j�0i (W denotes the Walsh-
Hadamard Transformation and �0 is the state with all qubits
set to 0). After this an observation is made which makes the
system collapse into a basis state.

In order to analyze the performance of this algorithm,
note that this algorithm is a special case of the phase-shift
transformation URsUyRtU (1) applied to jsi which has
already been analyzed in Sec. III. The algorithm follows
from (1), by substituting the W-H transform (W) for U and
the �0 state (state with all qubits in the 0 state) for s. Then
kUtsk

2 is the fraction of marked items which is 1� �. �
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FIG. 4 (color online). Redundancy, in the form of a parity bit,
helps to detect, and correct, single bit-flip errors.
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lies in the range �0; �0�. Therefore after applying the trans-
formation WR�0WRtW to j�0i, the probability of being in a
non-t state becomes �3; i.e., the overall failure probability

becomes
R
�0
0
�3d�R

�0
0
d�
� 1

4 �
3
0.

The performance of the algorithm is graphically illus-
trated in Fig. 2. In [5], it will be shown that the performance
of the phase-shift algorithm of this Letter for the types of
problems discussed in this section is asymptotically
optimal.

VIII. Quantum control and error correction.—Let us say
that we want to implement a certain transformation U to
drive the system into a t state (or subspace) with certainty.
However, when U is applied to s, the probability of reach-
ing t is only �1� ��; i.e., U produces an error of �. The
analysis of Sec. III shows that if we can apply the com-
posite operation URsUyRtU to jsi, then we can reduce the
error from � to �3. This implementation thus depends on
our ability to efficiently apply the operations U, Rs, Uy,
and Rt. Similar transformations occur in the context of self-
correcting pulses and have been extensively studied in
NMR. This connection will be developed further in [10]
where a threshold condition is derived and it is shown how
to eliminate errors module by module.

Quantum gates being reversible, we assume that we can
apply Uy as easily (note that this must reuse the same or
very similar hardware as what U did so as to keep the error
exactly the same). For systematic errors and slowly varying
random errors, this can probably be achieved since we
assume that the circuit parameters stay fixed in time. Rs
and Rt require us to selectively shift the phases of certain
states. Shifting the phase of a state is as easy as identifying
the presence of the state (Fig. 3). This leads to a number of
different control and error-correction schemes, depending
on the type of error to be corrected. To summarize, the
error-correction technique requires the following condi-
tions to be satisfied: (i) In case we are correcting errors
in a transformation, U, we should be able to apply U twice
and Uy once. These transformations must be applied with
exactly the same error as in the original U. (ii) We should
have a submodule to distinguish the signal part of the
output wave function from the error. This is necessary to
carry out Rt. (iii) Finally, we assume the ability to perform
noiseless Rt and Rs operations. Reference [10] shows in
detail how the methodology of this Letter can be used to
design elementary (one and two qubit gates) that perform
precisely even in the presence of small errors in Rs and Rt.

We illustrate this error-correction procedure with a sim-
ple example (Fig. 4). Consider the problem of transmitting
classical information over a quantum channel. Although
the channel is quantum, the information of interest is
classical. Therefore the only portion of the errors that are
of concern are the amplitude errors (i.e., bit-flip errors); we
do not care about the phase. It is well known that by adding
a single parity bit, we will be able to identify the presence
15050
of single bit-flip errors. To correct these would normally
require additional bits. By making use of the error-
correction scheme of this Letter, we show how to correct
single bit-flip errors using just a single parity qubit using
twoU and one Uy transformations. The quantum nature of
the scheme enables us to correct the error without using
any additional qubits.

Reference [10] discusses some more realistic examples
which demonstrate the advantage of this scheme.

IX. Conclusion.—The variant of quantum searching dis-
cussed in this Letter supplements the original search algo-
rithm by providing a scheme that permits a fixed point and
hence moves towards a target state in a more directed way.
This new scheme leads to a robust quantum scheme for
quantum searching that is within a constant factor of the
most efficient possible [5]. Also it naturally leads to
schemes for error correction. Recently, the algorithm has
been implemented using NMR [11].
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