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Coarse-Graining Protein Energetics in Sequence Variables
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We show that cluster expansions (CE), previously used to model solid-state materials with binary or
ternary configurational disorder, can be extended to the protein design problem. We present a generalized
CE framework, in which properties such as energy can be unambiguously expanded in the amino-acid
sequence space. The CE coarse grains over nonsequence degrees of freedom (e.g., side-chain conforma-
tions) and thereby simplifies the problem of designing proteins, or predicting the compatibility of a
sequence with a given structure, by many orders of magnitude. The CE is physically transparent, and can
be evaluated through linear regression on the energies of training sequences. We show, as example, that
good prediction accuracy is obtained with up to pairwise interactions for a coiled-coil backbone, and that
triplet interactions are important in the energetics of a more globular zinc-finger backbone.
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Protein folding and protein design stand among the most
formidable challenges in contemporary computational bi-
ology. The 3D structure of a protein is uniquely encoded in
its 1D sequence of amino acids (AA), and enormous theo-
retical and computational research effort has been devoted
to understanding this encoding [1–3]. The problem can be
posed two ways: protein folding deals with predicting the
final 3D structure of a protein given its AA sequence,
whereas protein design is concerned with finding an opti-
mal sequence to fold to a predefined structure. Protein
design is useful both because it allows for the engineering
of macromolecules with desired properties [4], and be-
cause the development of computational design methods
deepens our general understanding of protein folding and
stability. Scoring functions that indicate the ability of
sequences to fold to any given structure are central to
both the folding and design problems. These range from
statistical knowledge-based functions derived from data-
bases of known protein structures [5] to empirical func-
tions mainly based on experimental measurements [6], to
more physics-based functions that attempt to model protein
free energy [6,7].

Physics-based energy functions have the potential of
being the most accurate and interpretable. These express
the energy of a protein sequence adopting a specified
structure in terms of atomic coordinates, and account for
energies arising from van der Waals (vdW) forces, elec-
trostatics, and solvation. All atoms in a protein can be
classified as either ‘‘backbone’’ or ‘‘side chain.’’ The back-
bone atoms are the same for each AA and represent the
overall structure or ‘‘fold’’ of a protein, as shown for two
examples in Fig. 1(a). The side-chain atoms are different
for different AAs, and give rise to additional degrees of
freedom termed ‘‘side-chain conformations’’ or ‘‘ro-
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tamers’’ [see Figs. 1(b) and 1(c)]. Even for a relatively
small protein fold of 100 AAs there are roughly 10130

possible sequences. Accounting for a set of common ro-
tamers expands the search space to �10230 structures. The
computational complexity of high-quality physics-based
scoring functions makes optimization over all sequences
and rotamers infeasible. Because sequence determines the
structure of a protein, a function should exist that maps
sequence directly to energy. A sufficiently accurate and
computationally tractable approximation of this function
would find widespread use in computational studies of
protein structure.

Mapping sequence to energy is similar to the configura-
tional problem in alloy theory [8–10] where distributions
of A and B atoms on a fixed topology of lattice sites specify
the energy [11]. The cluster expansion (CE) [8,9] has
proven extremely useful for rapidly expanding the energies
of alloys and searching for low-energy configurations. In
this Letter, we apply the CE to the protein design problem,
deriving two structure-specific functions that can deter-
mine the energies of a sequence adopting either a coiled-
coil or a zinc-finger geometry. Searches using these func-
tions can be used in the future to identify low-energy
sequences that adopt these folds. Further, CE can poten-
tially be applied directly to the more challenging protein
folding problem by deriving a function specific to each of
the �1000 known protein folds. Rapid evaluation of a
sequence with the full panel of functions could identify
the best structure. This approach, termed ‘‘threading’’ or
‘‘fold recognition,’’ is widely used for structure prediction
in combination with statistically derived energy functions.

While in alloys one typically treats binary distributions
(two possible species per site) or on rare occasions terna-
ries [12,13], the general protein design problem requires
3-1 © 2005 The American Physical Society
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FIG. 1 (color online). (a) The coiled coil (left) and the zinc-finger (right) protein folds. Orange spheres are backbone atoms and the
ribbons are a cartoon representation of the backbone geometry. The coiled-coil unit cells are highlighted. (b) The optimal rotamers for
two AA’s in an all-atom representation. (c) A set of common rotamers for one AA shown superimposed.
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extension to all 20 possible AAs. For a protein of L
residues let the variable �i � 1 . . .m indicate which of
the mAAs is present at site i. A sequence is then expressed
by ~� � f�1; . . . ; �Lg. The energy of a protein E� ~�; ~��
depends on this sequence and on the other microscopic
information ~� (e.g., positions of all atoms on the protein
and solvent molecules). The important energy function in
protein design, Emin� ~��, can be obtained by optimizing
over ~�:

Emin� ~�� � min
~�
E� ~�; ~��: (1)

The CE is a general approach to obtain Emin by expanding
in a suitable set of independent basis functions. Let
i; j; k � 1 . . .L denote sites and �;�; � � 1 . . .m� 1 ba-
sis function indices. Because the point basis
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where the J’s are expansion coefficients. We leave it to a
future paper to describe the mathematical properties of this
basis set [14]. Equation (2) is in principle exact, though in
practice the expansion has to be truncated. While the J’s
depend on the choice of basis functions, the sum over terms
spanning a cluster of sites fi; . . . ; jg has a physical inter-
pretation, and can be defined as the effective interaction
(EI) between the AA’s on these sites:

EI ��i . . .�j� �
X

�...�

Ji...j�...��
i
���

i� . . .�j
���

j�: (3)

The choice of point basis functions �� is in principle
arbitrary though we have found that previously proposed
basis functions [8] have poor numerical stability for the
high dimensional configuration spaces of proteins and
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make the expansion converge slowly. In this Letter we
use ����� � ���� ��. Hence ���m� 
 0 and the hypo-
thetical sequence fm; . . . ; mg has energy J0. If we assign m
to Alanine (Ala) any point EI ��i� equals the energetic
contribution of �i relative to Ala. Therefore, pair
EI ��i; �j� is the interaction of an AA pair, a measure
well known to biochemists [15]. This concept can be taken
beyond pairs—contributions purely from triplets can be
measured similarly. Although this is difficult to do experi-
mentally, the CE allows one to systematically analyze the
importance of higher order interactions.

Given Emin for enough sequences, Js can be extracted by
standard fitting procedures. Determining which Js to keep
in the fit is not always obvious. While one may be guided
by the idea that point terms are larger than pairs, which in
turn are larger than triplets, this is not always true. We use a
more systematic way for evaluating important Js based on
the cross-validation (CV) score [16]. Essentially, the CV
score is the average error with which each sequence is
predicted when left out of the fitting, and as such is a good
measure of the prediction power. Our procedure consists of
fitting a selected set of candidate clusters and ordering
them by the average jJj. Clusters for which the J value
largely arises from numerical noise increase the CV score,
and are excluded. When a cluster is included, so are all of
its subclusters.

We demonstrate the power of the CE by testing it on two
different protein folds, mimicking the protein design prob-
lem. The folding energy is defined as the energy difference
between the folded and the unfolded states: Efolding �

Efolded � Eunfolded. Although the CE can in principle be
used with any energy model, we test it here with a physi-
cally meaningful but relatively simple expression similar
to Hamiltonians commonly used in the design field [17]:

E� ~�; ~�� � EvdW � Eelec;wat � Esolv;sc � Etorsion; (4)

where EvdW is the vdW interaction modeled as a 6–12
Lennard-Jones potential, Eelec;wat is the total electrostatic
energy (excluding intra-side-chain interactions), Esolv;sc is
the solvation energy of all backbone and side-chain atoms
[18], and Etorsion is the side-chain torsional energy. All
energy terms are calculated using the CHARMM package
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FIG. 2. rms and CV scores vs number of clusters included for
coiled-coil fitting. Inset: CE predicted vs atomistic Emin for 3995
random sequences (only Emin � 10 kcal=mol shown).
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[19] with the param19 parameters. The unfolded state is
modeled by retaining only side-chain self-energies and
local interactions between side chains and their surround-
ing penta-peptide backbone. Because E� ~�; ~�� in Eq. (4) is
pairwise decomposable, we are able to apply the dead-end-
elimination (DEE) algorithm [20] followed by a branch-
and-bound search to arrive at the optimal rotamers corre-
sponding to Emin. Thus, in a CE derived from these Emin,
the Js and EIs parametrize optimized energies whereby all
the side-chain degrees of freedom are coarse grained out.
The EI, defined at the sequence level, may include higher
order terms even though the initial energy expressions at
the conformational level are pairwise decomposable. The
advantage of this procedure is an enormous reduction in
the search space, from �20m�L to mL, where 20 is the
average number of rotamers considered per AA.

In order to more accurately fit the important low ener-
gies, our fitting is weighted by max�e��E�E0�=K; w0�, where
E0 is the lowest energy in the data set, K is approximately
the range of interest above E0, and w0 is the minimal
weight at large E to avoid numeric instability.

Our first case study involves the coiled coil, a common
and well-characterized protein interaction interface
[Fig. 1(a)]. An ideal coiled-coil backbone possesses a
screw axis with a repeating unit every 7 residues (a heptad)
as well as C2 symmetry about the coil axis [21]. Since a
coiled-coil dimer can be of arbitrary length, we defined a
unit cell as a fragment of 4 heptads [highlighted in
Fig. 1(a)] and modeled it surrounded by unit cells with
identical sequence to avoid end effects. The energy of the
central unit cell plus half of its interaction with the rest of
the system is calculated. Only 4 sites in each heptad are
each modeled as one of 16 selected AA species (the 3
remaining sites are set to Ala). These 4 sites have been
shown, in many cases, to be sufficient to determine coiled-
coil dimerization preferences and other properties [22].

Our training set consists of 21 066 randomly chosen
sequences weighted by max�e��E�26�=120; 0:01�.
Truncating the CE at the pair level is sufficient to accu-
rately reproduce the energetics of the system. The struc-
tural symmetry reduces all 137 clusters up to pairs to 1
constant, 4 point, and 36 pair-level independent cluster
(7741 independent Js). We are therefore able to include
all of them as candidate clusters in the fitting. Figure 2
shows the weighted rms and CV scores of the least square
fitting versus the number of included clusters (ordered by
hjJji). Although the rms decreases monotonically as ex-
pected, the CV score reaches a minimum at 22 clusters, and
fluctuates (mostly increases) slightly afterwards. We thus
come to an ‘‘optimal’’ set of 22 clusters (3676 Js) for
energy prediction, with weighted rms � 1:0 kcal=mol
and CV � 1:1 kcal=mol. The most significant EIs are
found to correspond to residues that mediate contacts
between different helices, in agreement with biologists’
intuition about the system.
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To test the predictive character of the CE we compare its
prediction for 3995 random sequences not included in
training to the directly calculated energy (Fig. 2 inset).
The unweighted rms error is 2:4 kcal=mol for all energies
and 1:7 kcal=mol for �26<Emin < 10 kcal=mol. The er-
ror is sufficiently small for such applications as sequence
optimization, and is comparable with the accuracy of the
underlying energy model. We trade such a small error for
being able to predict the optimal energy of any sequence by
summation of EIs for 22 clusters, as opposed to performing
global optimization over an average of 5:9� 1055 states.
Even compared to the highly efficient DEE method for
side-chain positioning, the time to calculate Emin of a
sequence is reduced from �200 sec to �1 �s with our
coarse-grained Hamiltonian, a 2� 108-fold acceleration.

As a second application we consider the zinc finger, a
common DNA-binding fold [Fig. 1(a)]. The backbone of
Zif268 (PDB ID 1ZAA) residues 33–60 is used as a model
Zn-finger structure. Following Mayo et al. [23], we con-
sider a sequence space in which 2 sites are fixed, 1 site has
7 candidate species, 18 sites have 10, and the other 7 sites
have 16. The training set consists of 29 864 random se-
quences weighted by max�e��E�35�=100; 0:01�. Because
there are too many pairs (325 pairs, or 4� 104 Js) to easily
include in one single fitting, we start with constant and
point terms and add pairs one by one to the existing
clusters, retaining a pair if it decreases CV. We iterate until
no new pair can be selected. However, truncation at pairs
leads to an unsatisfactory fitting with CV> 6 kcal=mol.
Instead of trying all 2600 triplets, we use an information
theory based approach to determine two particularly im-
portant triplet clusters [14]. These triplets have significant
3-body EIs when the 4 constituent sites [see Fig. 1(a)],
located in proximity to each other, are occupied by aro-
matic side chains W, H, Y, and F. We end up with one
constant, 26 point, 24 pair, and 2 triplet clusters (5692 Js in
total) for fitting. The rms and CV scores versus the number
3-3



FIG. 3. rms and CV scores for Zn-finger fitting. Inset: CE
predicted vs atomistic Emin for 4000 random sequences (only
Emin � 10 kcal=mol shown).
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of clusters included are shown in Fig. 3. The two triplets
are found to be indispensable in correctly reproducing the
energies. This demonstrates the existence of complex cor-
relations in a globular protein, and the CE provides a
systematic, quantitative way of identifying such correlated
sites. Prediction of 4000 random Zn-finger sequences is
shown in Fig. 3 inset. Again a reasonably good accuracy of
2:7 kcal=mol for �35<Emin < 10 kcal=mol is obtained.
Although a larger prediction error 15:4 kcal=mol is ob-
tained with all energies, high energy sequences are cor-
rectly detected. Such error is traded for a remarkable
reduction in search space: from 1:4� 1060 to 1:9� 1027

states.
In summary, we have demonstrated how the energetics

of a protein with predefined backbone can be coarse
grained to a function of sequence only. We have success-
fully applied the method to two distinct families of pro-
teins, and found that two different types of interactions are
important for representing the energy. The accuracy of the
CE predictions, which can be systematically improved,
implies that this much simpler expression can be used in
place of traditional Hamiltonians, dramatically improving
computational efficiency.

The CE methodology can be coupled with any energy
model, e.g., more accurate Hamiltonians or experimentally
determined energies, and properties other than energy are
potentially expandable. Thus, it can be extended to treat
any multispecies search problem for which an appropriate
scoring scheme can be generated. In structural biology, this
includes modeling not only protein stability, but protein
interaction specificity, DNA and RNA structure, protein-
DNA interactions, and potentially the interactions of small-
molecule pharmaceuticals. We are optimistic that the
method will find a wide range of practical applications in
biology research.
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