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Cotunneling Current and Shot Noise in Quantum Dots
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We derive general expressions for the current and the shot noise, taking into account non-Markovian
memory effects. In generalization of previous approaches, our theory is valid for an arbitrary Coulomb
interaction and coupling strength and is applicable to quantum dots and more complex systems such as
molecules. A fully consistent diagrammatic expansion up to second order in the coupling strength, taking
into account cotunneling processes, allows for a study of transport in an intermediate coupling strength
regime relevant to many current experiments. We discuss a single-level quantum dot as a first example,
focusing on the Coulomb-blockade regime where the cotunneling processes dominate. We find super-
Poissonian shot noise due to inelastic spin-flip cotunneling processes at an energy scale different from the
one expected from first-order calculations.

DOI: 10.1103/PhysRevLett.95.146806 PACS numbers: 73.63.2b, 72.70.+m, 73.23.Hk
Introduction.—The study of shot noise in transport
through mesoscopic devices, such as quantum dots or
molecular devices, is a field of intense theoretical and
experimental research [1]. It provides additional informa-
tion, not contained in the current, about system parameters
that govern the electronic transport [2]. For weak coupling
between the quantum dot and metallic electrodes, transport
is dominated by sequential tunneling [3], described by
first-order perturbation theory in the coupling strength �,
or its variants to include coherence effects [4]. Shot noise
in this limit has been studied for a variety of models,
including effects from electronic interactions [2– 4], gen-
eralizations to multilevel dots, allowing for coupling to
photonic and vibrational modes [2,5,6], or spin-polarized
leads [7]. However, a theory taking fully into account
interaction effects as well as arbitrary coupling strength
does not exist. Expressions for the shot noise in terms of
nonequilibrium Green functions have been derived only in
the absence of Coulomb interactions or in a perturbative
expansion thereof [8].

Shot noise has been measured in various experimental
realizations [9–11]. As the strength of the coupling in a
given experiment is not a priori known, it is unclear
whether first-order calculations are sufficient. Second or-
der tunneling (cotunneling [12]) processes can play an
important role for the conductance [13], particularly in
the Coulomb-blockade regime. Shot noise in this regime
has been discussed theoretically in Ref. [14] where the
possibility of super-Poissonian noise was suggested.
However, that work was limited to pure cotunneling pro-
cesses, which is inadequate for the experiment of Ref. [13].

In this Letter we provide a complete description of the
current and shot noise, valid for arbitrary coupling strength
�, while accounting fully for the Coulomb interaction. By
making use of a diagrammatic language, we expand the
expressions up to second order in our only perturbative
parameter, the ratio of the coupling strength to the tem-
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perature, �=kBT. We study explicitly the example of a
single-level quantum dot, out of equilibrium for any bias
voltage. The theory covers the Coulomb-blockade regime
(low bias), the sequential-tunneling regime (bias larger
than the first single-charge excitation energy), and the
crossover between both. We find that super-Poissonian
shot noise appears in the Coulomb-blockade regime due
to the inelastic spin-flip cotunneling processes. This occurs
at a different energy scale than expected from first-order
calculations. We also show that the noise to current ratio is
highly sensitive to the coupling strength in this regime.
This may serve as an additional spectroscopic tool for the
couplings.

The model.—The Anderson-impurity model is based on
the Hamiltonian Ĥ � ĤL � ĤR � Ĥdot � ĤT;L � ĤT;R

with Ĥr �
P
k��k�ra

y
k�rak�r, Ĥdot �

P
���c

y
�c� �Un"n#

and ĤT;r �
P
k��tra

y
k�rc� � H:c:� for r � L;R. Here, ĤL

and ĤR describe the left and right electrodes with non-
interacting electrons, Ĥdot the quantum dot with one (spin-
dependent) level of energy ��, and Coulomb interaction U
for double occupancy of the dot. Tunneling between the
leads and the dot is modeled by ĤT;L and ĤT;R. The
coupling strength is characterized by the intrinsic line
width �r � 2��ejtrj2, where �e is the (constant) density
of states of the leads. For later use we define � � �L � �R.
The creation and annihilation operators ayk�r�ak�r� and
cy��c�� refer to the electrodes and the dot, and n� � cy�c�.

We are interested in the current I and the (zero-
frequency) current noise S, which for eV � kBT is domi-
nated by shot noise. Both quantities are related to the
(symmetrized) current operator Î � �ÎR � ÎL�=2 with Îr �
�i�e=@�

P
k��tra

y
k�rc� � H:c:�, from which we obtain I �

hÎi and

S � 2
Z 0

�1
dt�hÎ�t�Î�0� � Î�0�Î�t�i � 2hÎi2�: (1)
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Diagrammatic technique.—In Ref. [2] we have formu-
lated a theory of current noise for transport to first order in
�, based on a diagrammatic language that has been devel-
oped for a systematic perturbation expansion of the current
through localized levels [15]. All transport properties are
governed by the nonequilibrium time evolution of the
density matrix. The electrode degrees of freedom can be
integrated out, and we obtain a reduced density matrix for
the dot degrees of freedom only, labeled by �. The time
evolution of the reduced density matrix, described by the
propagator ��0��t0; t� for the propagation from a state � at
time t to a state �0 at time t0, can be visualized by diagrams
[2,15] on the Keldysh contour. The full propagation is
expressed as a sequence of irreducible blocks (self-
energies) W�0��t

0; t� that are associated with transitions
from state � at time t to state �0 at time t0. This yields
the Dyson equation

� �t0; t� � 1�
Z t0

t
dt2

Z t2

t
dt1W�t2; t1���t1; t� (2)

for the propagator, where the boldface indicates matrix
notation related to the dot eigenstate labels. For the follow-
ing, it is convenient to introduce the Laplace transform
W�z� � @

R
0
�1 dte

ztW�0; t� and the definitions W �
W�z�jz�0� and @W � ��@W�z�=@z�jz�0� .

In the long-time limit, i.e., for time differences t0 � t
larger than the correlation time ( / 1=�) over which the
system forgets its initial state, the propagator becomes
pst 	 eT , where eT � �1; 1; . . . ; 1�, and pst is the vector of
the stationary probabilities, determined from Wpst � 0,
independent of the initial (diagonal) density matrix. As
W has a zero eigenvalue, it cannot be inverted. With the
normalization condition eTpst � 1 we obtain the stationary
probabilities pst by solving

� ~Wpst�� � ���;�0
; (3)

where ~W is identical to W but with one (arbitrarily chosen)
row �0 being replaced with ��; . . . ;�� [2].

For a diagrammatic representation of the current, we
introduce a block WI, in which one (internal) tunneling
vertex is replaced by an external vertex for the current
operator Î divided by e=@. We get

I �
e

2@
eTWIpst: (4)

The shot noise, Eq. (1), involves expectation values of
two current operators. They appear either in a single irre-
ducible block, which we denote by WII, or in two different
blocks WI. We find

S �
e2

@
eT�WII �WI�PWI � pst 	 eT@WI��pst (5)

with @WI � ��@WI�z�=@z�jz�0� . The object P �R
0
�1 dt

1
@
���0; t� ���0;�1�� is determined by

~WP � @ ~Wpst 	 eT � �pst 	 eT � 1��1� ��0;�0
�; (6)
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where we use the extra condition eTP � 0, which follows
from the definition of P, the Dyson equation, and eTW �
0. The set of matrix equations, Eqs. (3)–(6), constitutes the
starting point for all results presented below. For a system-
atic perturbation expansion of current I and noise S in �,
we expand all quantities ~W, WI, WII, @W, @WI, pst, and P
order by order. For transport in first order (sequential
tunneling), the above expressions simplify, as all contribu-
tions involving the derivatives @W and @WI disappear as a
consequence of the fact that W starts at order �, pst at �0,
and P at ��1. These derivatives are associated with non-
Markovian behavior of the system and have not been taken
into account in Refs. [2,3]. They are absent for first-order
transport, but they are important for second- and higher-
order corrections (for a discussion of non-Markovian ef-
fects see also Ref. [16]). Higher derivatives will not appear
for the shot noise even for higher-order corrections.

We emphasize that the expressions derived above are
valid for rather general Hamiltonians, such as arrays of
quantum dots or small molecules with many levels and full
two-body electron interactions [17,18]. In the following,
however, we focus on the Anderson-impurity model.

Results.—We now recall the main features of first-order
(sequential) transport. Both current and shot noise increase
monotonically with bias voltage, and display plateaus sep-
arated by thermally broadened steps. The step positions are
given by the energy parameters, which determine the bias
needed to make single-charge excitations energetically
possible. The coupling parameters set the plateau heights.

Higher-order transport modifies the current and noise in
two different ways. First, it introduces an additional broad-
ening of the steps; i.e., the latter is effectively given by the
sum of � and T. Second, it allows for transport in the
Coulomb-blockade region at low bias, where sequential
tunneling is suppressed. With increasing coupling strength
�, second-order and eventually also higher-order correc-
tions to transport become more and more important. To
illustrate the validity range of our second order pertur-
bation expansion, we first consider the noninteracting
limit, U � 0, since in this case exact results [1] are avail-
able for the current IU�0 � e=h

R
d!

P
����!��fL�!� �

fR�!�� and shot noise SU�0 � 2e2=h
R
d!

P
�f���!� 


�fL�!� 
 �1 � fL�!�� � fR�!��1 � fR�!��� � ���!� 

�1 � ���!���fL�!� � fR�!��2g with ���!� � �L�R=
��!� ���

2 � ��=2�2�. The result is shown in Fig. 1 where
we compare first order, (first plus) second order, and exact
current and noise for the parameter set �# ��1:5 meV,
�" � 0:5 meV, kBT � 0:1 meV, and �L � �R � �=2.
We choose a symmetric bias voltage, such that �L �
eV=2 and �R � �eV=2. Outside the Coulomb-blockade
regime, the second order corrections (dashed lines) to
sequential tunneling (dotted lines) start to become impor-
tant for �=kBT < 0:5. As long as �=kBT < 1, the exact
curves (solid lines) are perfectly reproduced by second
order perturbation theory, while the sequential-tunneling
results clearly deviate. For �=kBT � 2 third-order contri-
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FIG. 2. Current I and conductance dI=dV (inset) vs bias
voltage for �# � �1:5 meV, �" � 0:5 meV, U � 4 meV, and
�L � �R � �=2 for various values of � and kBT. The broad-
ening of the first step due to � and kBT is shown in the inset. The
dashed and dotted curves with the same ��� kBT� have about
the same width.

FIG. 3. The Fano factor F � S=2eI vs bias voltage for the
same parameter set as Fig. 2 but fixed temperature kBT �
0:1 meV and various �. Inelastic cotunneling leads to a super-
Poissonian Fano factor for biases around��co=e � 2 mV. First-
order processes may also lead to a super-Poissonian value at a
scale �2�"=e � 1 mV. The crossover between these energy
scales runs over 3 orders of magnitude in the coupling.
Outside the Coulomb-blockade regime the first-order results
are recovered already at �=kBT � 0:1. The inset shows a sketch
of the transport situation at eVbias � �co.
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FIG. 1. Current I and shot noise S vs bias voltage for kBT �
0:1 meV, �# ��1:5 meV, �" �0:5 meV, U�0, and �L��R�

�=2. First order (dotted lines) and second order (dashed lines)
are compared to the exact results (solid lines) for �=kBT �
0:5; 1; 2.
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butions start to play a role, at least for the noise, where
unphysical nonmonotonicities arise around the steps. We,
therefore, restrict ourselves to � � kBT for the following
discussion.

The elastic cotunneling processes that do not change the
dot state or its energy allow for an electron exchange with
the reservoirs via an intermediate virtual state. This leads
to a finite linear conductanceG � dI=dVjV�0. The noise is
also nonvanishing at zero bias, known from equilibrium
fluctuation-dissipation theorem (FDT), S � 4kBTG. In the
Coulomb-blockade regime the FDT can be extended to
nonequilibrium [14] and takes the form S�2��V�=
2eI�2��V� � coth�eV=2kBT�. Our theory fulfills this rela-
tion; however, we stress that the FDT holds only in the
regime of purely elastic cotunneling processes. In Fig. 2
we show the current I normalized to �e�=h for the same
set of energy parameters as in Fig. 1 but with a finite
interaction U � 4 meV. Since the bias is applied symmet-
rically, the dot preferably occupies the state with spin #
(Coulomb blockade) until it can be emptied due to first-
order hopping processes about 3 mV (first step). Further
steps arise about 5 and 9 mV due to the double occupied
dot state. This parameter set is similar to the experimental
situation of Ref. [13] for a quantum dot with occupation
N � 2 [19]. In Fig. 3 of that paper, a conductance feature
(step) is observed inside the Coulomb-blockade diamond,
which is attributed to the inelastic cotunneling processes.
For our model one expects this inelastic cotunneling fea-
ture in the conductance at a bias of �co=e � ��" � �#�=e �
14680
2 mV. This feature is hardly noticeable in the conductance
plot of the inset of Fig. 2, because our coupling � is
relatively weak and the energy �co is fairly close to the
sequential-tunneling energy. However, the inelastic cotun-
neling processes can be very clearly observed in the shot
noise and the Fano factor F � S=2eI, as discussed below.

We note that the dashed and dotted curves in Fig. 2 with
same total sum ��� kBT� almost lie on top of each other.
The differential conductance plot (inset) shows that the
6-3



PRL 95, 146806 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
30 SEPTEMBER 2005
temperature effect is a little stronger: the dashed curve with
the highest temperature has the lowest peak. The full width
of the conductance peaks is between 0:5–0:8 mV� 6���
kBT�, as compared to 5:44kBT for pure sequential tunnel-
ing [13]. The peak position shifts from the first-order value
of 3 mV to lower bias, indicating the renormalization of the
‘‘bare’’ level.

The Fano factor F � S=2eI for a fixed temperature and
a sequence of coupling ratios �=kBT is shown in Fig. 3. At
low bias, the Fano factor varies as [14] coth�eV=2kBT�
until it reaches the value 1, as expected for uncorrelated
systems. For bias voltages around the spin-flip excitation
energy �co � 2 meV, the Fano factor becomes super-
Poissonian [14], F > 1. Once sequential tunneling be-
comes dominant (at a bias 3 mV), the Fano factor drops
to values between 1 and 1=2.

The super-Poissonian Fano factor appears for bias volt-
ages at which the spin- " level acquires some finite occu-
pation probability. This can be either due to inelastic spin-
flip cotunneling, appearing at a bias ��co=e � 2 mV, or
due to first-order tunneling processes [20] at a bias �2�"=
e�1 mV. The first-order processes are exponentially sup-
pressed but, for the chosen parameters, still finite [20]. The
enhancement of the noise comes from the second and third
terms of Eq. (5), and, physically, is due to bunching of the
transferred " electrons during the time when this transport
channel is not blocked by the dot being occupied with a #
electron. Both the position and the height of the peak in the
Fano factor depends on all system parameters. In Fig. 3 we
study the dependence on the ratio �=kBT.

With increasing coupling strength �, the peak decreases
and moves towards higher bias. For �=kBT � 0:0005 our
result (dotted line) coincides with that of a pure first-order
calculation, which would show no dependence on �=kBT
in this plot. However, at large coupling �=kBT � 0:5 (solid
line), the second order terms exceed the first-order contri-
butions by several orders of magnitude in the Coulomb-
blockade regime. Here, the cotunneling processes are only
algebraically suppressed, compared to the exponential sup-
pression of the sequential processes. Consequently, the
elastic cotunneling processes wipe out the transport fea-
tures due to purely sequential processes. Inelastic cotun-
neling, however, leads again to super-Poissonian shot noise
of a magnitude that may be experimentally accessible [11]
for the larger �=kBT values. We emphasize that, since the
peak is close to the onset of sequential tunneling, a theory
purely based on cotunneling processes [14] would not be
sufficient. The importance of cotunneling processes for the
Fano factor at rather weak coupling in the Coulomb-
blockade regime contrasts with the situation at larger bias
where second order corrections become noticeable only for
�=kBT � 0:1.

In summary, we presented a fully consistent theory of
current and shot noise within a diagrammatic technique
that includes higher-order tunneling processes in the cou-
pling � of a quantum dot to metallic electrodes. As an
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example, we studied current and noise for an Anderson-
impurity model with a finite spin splitting. We showed that
especially the steps and the Coulomb-blockade regions are
strongly affected by second order processes. Cotunneling
processes dominate the sequential processes in the
Coulomb-blockade regime and lead to super-Poissonian
shot noise at the energy scale of inelastic cotunneling
processes. With the experimental observation of such ef-
fects the characterization of quantum dots (or molecules)
and their couplings to electrodes could be vastly improved.
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