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Self-Interaction Errors in Density-Functional Calculations of Electronic Transport
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All density-functional calculations of single-molecule transport to date have used continuous exchange-
correlation approximations. The lack of derivative discontinuity in such calculations leads to the
erroneous prediction of metallic transport for insulating molecules. A simple and computationally
undemanding atomic self-interaction correction (SIC) opens conduction gaps in /-V characteristics that
otherwise are predicted metallic, as in the case of the prototype Au/ditholated-benzene/Au junction.
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Molecular devices are becoming increasingly important
in a wide spectrum of applications. These range from the
building blocks of revolutionary computer architectures
[1], to disposable electronics, to diagnostic tools for ge-
netically driven medicine, to multifunctional sensors [2].

Therefore, interest is growing in the development of
computational tools capable of predicting the /-V charac-
teristics of devices comprising only a handful of atoms. In
general, these are based on Landauer scattering theory,
typically in the nonequilibrium Green’s function (NEGF)
formalism [3], combined with an electronic structure
method, usually density-functional theory (DFT) [4,5].
Such schemes are physically appealing and yield useful
results [6], even if they are incomplete [7-9], and are
computationally simpler than many-body methods [10].
The fundamental requirements for an electronic structure
theory applied to the problem of transport through single
molecules are: (1) to be accurate when the molecule has a
fractional number of electrons, (2) to describe properly
both the electron affinity (A) and ionization potential (/)
of the isolated molecule, and (3) to be cast in a single
particle form. The first two conditions are necessary for a
correct description of the transport, while the third pro-
duces computationally efficient algorithms. Most impor-
tantly, as we show here, we need an accurate description of
the HOMO state of the molecule plus the leads as a
function of its occupation.

The exact Kohn-Sham (KS) potential of a N-electron
system always satisfies the condition €koy,o = —Iy; i.e.,
the highest occupied KS molecular orbital energy is the
negative of the N-electron ionization potential. Let N + n
be the number of electrons localized on a molecule weakly
coupled to a reservoir, where N is an integer, but n is
continuous. For —1 <n = 0, eX3,,5 = —1Iy, but for 0 <
n=1,e88 0 = —Iy+i. To achieve this, the KS potential
jumps by a step of Iy — Iy = Iy — Ay, where Ay, is the
electron affinity. This is the infamous derivative disconti-
nuity of DFT [11,12], which is missing in ordinary con-
tinuous functionals such as the local density (LDA) or the
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generalized gradient approximation (GGA) [13]. Smooth
exchange-correlation functionals continuously connect the
orbital levels for different integer occupations, leading to
qualitative errors such as the erroneous prediction of the
dissociation of heteronuclear molecules into fractionally
charged ions [14]. We now show the errors that this gives
rise to in a typical transport calculation.

We model a two terminal molecular device as two
featureless leads (constant density of states) kept at differ-
ent chemical potentials w; and pr and coupled through a
single energy level € [Fig. 1(a)]. The density of states
(DOS) associated with € is a Lorentzian, D(E) = L X

m, with broadening I' arising from the hopping
to the leads. The energy level occupation n and the steady
state current / can be obtained by balancing the in-going
and out-going currents to and from the energy level [3]. At
steady state, n is just proportional to the Fermi distributions
f(e,T) of the leads: n = [* dED(E)f(E — pu, T) +
f(E — ug, T)], while the current is given by

r
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FIG. 1 (color online). (a) Schematic two terminal device. Two
leads are kept at the chemical potentials w; and wgr and the
transport is through a single energy level e. The hopping energy
between the leads and the energy level is I'. (b) Dependence of e
on its own occupation n. The straight line corresponds to a
typical LDA dependence and the steplike line to the DISC.
Notice that the LDA line becomes flat at n ~ 1.5 [e(n) = 0]
since here the eigenstate is unbound. The dotted horizontal line
denotes the position of the leads Fermi level Ef.
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1=2r f’; dED(E)f(E — pr, T) — f(E — pu, T)].
(1)

The dynamics of this model are rather simple. Consider the
weak coupling limit (I' < Ay), where simply D(E) ~
S8(E — €). Both occupation and current are solely deter-
mined by the position of the energy level with respect to
the chemical potential of the leads. If € is larger than both
mr, and wg, then n = 0 and no current flows. In contrast, if
the energy level is below the chemical potentials of both
leads, then n = 2, but the current is still zero. Finally, if
MR < € < up the occupation is 0 <n <2 and current
flows. Considering now that the chemical potential in the
leads is simply up g = Ef = eV /2, where Ep is the Fermi
level of both leads and V is the applied bias, this simple
model predicts a conductance gap in the /-V curve for
—2|Ep — €| < eV <2|Eg — €.

However, because this is an effective one-body repre-
sentation of an interacting system, in general the position
of the energy level depends on its own occupation, € =
€(n). Let us now solve this problem within KS DFT [5].
For definiteness, assume that € is the LUMO (n = 0) of a
certain molecule, which contains N electrons in the neutral
state. In the exact KS theory, when this molecule is weakly
coupled to a reservoir, € will be a discontinuous function of
n [14]. We parametrized this dependence with the steplike
curve of Fig. 1(b), and we call it DISC (discontinuous
occupation). For 0 <n =1, €(n) = —Ay, where Ay is
the electron affinity of the isolated molecule, while €(n)
jumps rapidly to its next plateau ( — Ay, ) just above 1. In
contrast, the LDA energy level position € varies approxi-
mately linearly with n (e = Un), reflecting the fact that the
LDA total energy varies approximately quadratically
around the neutral configuration [15].

The different I-V characteristics that one obtains by
using either the LDA or DISC parametrizations are pre-
sented in Fig. 2 along with the level occupation and its
position as a function of bias. These have been obtained by
iterating self-consistently n(e) with e(n), where we assume
€(0) just below Ey (|€(0) — Eg| = 0.5 eV). Consider first
the weak coupling limit. In both LDA and DISC, the
energy level pins Eg at zero bias. As the bias is further
increased, more charge fills the energy level, which keeps
rising up. Figure 2(c)1 shows that this rise is found both in
LDA and DISC and is approximately linear with the bias.
Importantly, as soon as € shifts above the chemical poten-
tial of the right-hand side contact, then f(e — ug) = 0,
and the current will be simply proportional to the level
occupation (I = I'f(e — uy)).

Clearly LDA and DISC behave in a qualitatively differ-
ent way. In fact, a LDA-type potential leads to a linear
dependence of the occupation on bias [see Fig. 2(b)1], and
consequently to a metallic conductance. In contrast, in
DISC, the energy level shifts upwards without substantial
charging. The result is that the occupation jumps almost
discontinuously from n =0 to n = 1 when the bias is
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FIG. 2. (a) Current /, (b) occupation n, and (c) position of the
energy level € as a function of bias V. The parameters used here
are €(0) = —55eV, U=5¢eV, Egp=-50¢V, and T =
300° K. The curves on the left-hand side are obtained in the
weak coupling limit (I' = 0.02 eV) and those on the right-hand
side in the strong coupling limit (I' = 1.2 eV).

increased, and consequently a gap in the /-V curve opens.
Such a gap is as large as the one in the occupation, which is
roughly Ay.

We emphasize that, despite the simplicity of the function
used to mimic the discontinuity, our model restores the
correct /-V behavior with the expected conductance gap,
roughly equal to the Ay, thus repairing the faulty LDA
description. The lack of eigenvalue discontinuity causes a
dramatic overestimation of the metallicity for a molecular
junction obtained within LDA. This result generalizes
arguments previously given using simple unrestricted mod-
els [16], many-body theory [7], or, within DFT, only for
weak bias [8].

In contrast, the curves obtained for LDA and DISC in the
strong coupling limit [Figs. 2(a)2—2(c)2] look rather simi-
lar. This is because a considerable fraction of the level
occupation and the current comes from the tail of the
energy level DOS. In the large coupling limit, I' ~ Ay,
both n and the current I are rather insensitive to €(n), and
we find that standard continuous functionals give rather
accurate /-V characteristics.

Having identified the lack of the derivative discontinuity
in LDA as a major source of error in DFT-based transport
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calculations, we propose a corrective scheme for the NEGF
method. The key consideration is that in LDA (or GGA),
the linear behavior of the KS eigenvalues and the absence
of derivative discontinuity in the total energy functional is
mainly due to the presence of self-interaction error (SIE),
that is, the interaction of an electron with the exchange and
correlation potential generated by its own charge [17]. This
spurious interaction is responsible for a series of failures of
DFT. Most notably, negatively charged ions are unstable
and in general —eﬁ%Mo is not even close to the ionization
potential. The elimination of the SIE improves consider-
ably the agreement with experiments with respect to LDA
and, more importantly in this context, makes the KS ei-
genvalues resemble more closely the true removal energies
[17].

Direct subtraction of SI in atoms is conceptually and
practically simple [17]. However, the application of the
method to extended systems is both cumbersome and
computationally demanding [18]. A useful alternative is
that first proposed by Vogel and then extended by Filippetti
in which the SI is parametrized in terms of its atomic
counterparts and subtracted out (pseudo-SIC, PSIC) [19].
In the spirit of this method we have constructed an effec-
tive tight-binding model, and investigated the transport of a
benzene-(1, 4)-dithiolate (BDT) molecule sandwiched be-
tween two (001) oriented gold current/voltage probes
(Fig. 3). This prototypical case has been much studied,
since typical LDA-DFT calculations [20] are qualitatively
correct, but overestimate the conductance [21] by one or 2
orders of magnitude. Moreover, when the atomic details of
the anchoring structures are considered, most of the calcu-
lations fail to predict a conductance gap at zero bias.

Here we adopt a minimal 77 model where we consider
only p, orbitals (orthogonal to the BDT plane) for both C
and S atoms and s orbitals for Au. H atoms are simply used
for passivation and are not considered explicitly. The on-
site energy of such p, orbitals is parametrized from their
atomic counterparts and coincides with the HOMO state of
the free atom. This is computed for different occupations
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FIG. 3 (color online). BDT molecule attached to (001) ori-
ented Au surfaces. The angle ¢ between the BDT plane and the
gold modulates the strength of the molecule/lead coupling.

with a standard self-consistent calculation using either
LDA and SIC [17]. The resulting €(n) curves (not reported
here) are similar to that of Fig. 1(b). Our procedure ne-
glects the crystal field, and assumes that the electron
screening is weak. Although for a fully quantitative analy-
sis such aspects must be considered, we do not expect that
these details will change the main features of our model.
Finally, the hopping integrals are taken from the literature
[22].

The I-V characteristics are then calculated using stan-
dard NEGF methodology with a tight-binding version of
our code SMEAGOL [6,23]. In the simulation, we alter the
strength of the coupling to the leads by varying the angle ¢
between the BDT plane and the apex of the Au pyramid
(see Fig. 3). The coupling is then 7y sin¢ with y the Au-S
spo hopping integral. The alignment of Ey of the leads
with egopmo of the isolated molecule has been chosen in
order to reproduce that calculated by DFT-LDA, although
variations of *£1 eV around this value do not cause any
significant change in our results.
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FIG. 4.

(a) I-V characteristic, (b) occupation as a function of
energy, and (c) DOS for the system BDT + Au leads. The cases
of strong (¢ = 30°) and weak coupling (¢p = 5°) are presented,
respectively, in the right- and left-hand side panels. We present
only LDA DOS, since PSIC gives almost identical results in the
energy window shown here. In panels (c) the vertical lines
denote the position of Ef.
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In Fig. 4, we present our calculated /-V curves, the
occupation of the HOMO and LUMO state as a function
of bias V, and the DOS for both the weak (¢ = 5°) and
strong (¢ = 30°) coupling regime. For weak coupling,
LDA and PSIC give dramatically different /-V character-
istics. In particular, PSIC opens a conductance gap in the
1-V around zero bias. This is despite that fact that the LDA
and PSIC DOS look almost identical. In both cases Ef pins
the bottom of the S-derived empty 7" orbital, which is the
first state to get involved in the transport process. Once bias
is applied, such a LUMO state gets progressively more
populated and follows the lead kept at positive bias. The
current is then roughly proportional to the state occupation,
as seen previously in the case of the simple model. The key
point here is that, while in LDA the state charges linearly
with bias, in PSIC it can follow the upper bias without
charging significantly. Again the onset of charging will
become important only when the state has moved upwards
in energy enough to match the derivative discontinuity. At
this point the LUMO 7" state starts to conduct (around
V =1 Volt). In addition, for such biases, also the HOMO
7r state appears in the bias window and contributes to the
current.

In the strong coupling limit, the differences between
LDA and PSIC are much less evident. In this case, both
the 7r and 7" states are very broad [see Fig. 4(b)2] provid-
ing contributions to the current, even at low bias.

We emphasize here that a more rigorous approach would
be to do, for example, an exact exchange calculation [24]
within NEGF. This is within present computational capa-
bility, but would be costly. Our results demonstrate that
such a calculation would yield very different results from
LDA or GGA calculations in the weak coupling limit.

In conclusion, we have discussed the main character-
istics of DFT-based NEGF methods. We have identified the
lack of derivative discontinuity in continuous density-
functional approximations as a major source of error in
calculating the /-V characteristic of a molecular junction.
Our results demonstrate that LDA and GGA are not suit-
able for transport calculations, at least when the coupling
is weak. We have further proposed a simple corrective
scheme based on the removal of the atomic self-
interaction. This has the remarkable property of reintro-
ducing, albeit in an approximate way, the derivative dis-
continuity of the potential, while adding moderate
additional computational costs. These KS eigenvalues are
more closely related to the true removal energies, and
therefore can be employed in a NEGF transport calcula-
tion. We have implemented such a method in a simplified
tight-bonding scheme and demonstrated that conductance
gaps at low bias can open for molecular junctions predicted
metallic by LDA.
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