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We calculate a force due to zero-temperature quantum fluctuations on a stationary object in a moving
superfluid flow. We model the object by a localized potential varying only in the flow direction and model
the flow by a three-dimensional weakly interacting Bose-Einstein condensate at zero temperature. We
show that this force exists for any arbitrarily small flow velocity and discuss the implications for the

stability of superfluid flow.
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Although there are various definitions of superfluidity
[1], one of the defining features of a superfluid is the
existence of a critical velocity below which the superfluid
flows without dissipation. Landau argued that, by perform-
ing a Galilean transformation on the ground state of a
uniform superfluid, the superfluid would become unstable
above a well-defined critical velocity due to the creation of
quasiparticles [2]. If one assumes that it is only through the
creation of quasiparticles that dissipation can occur at 7 =
0, then one can infer that a stationary object in a slow-
moving superfluid (with a flow velocity well below the
critical velocity), would remain in a metastable stationary
state as there would be no force acting on this object.

In this Letter, we argue that the phenomenological pic-
ture of superfluid flow—namely the existence of a meta-
stable state below a critical velocity—is incomplete and
problematic. We illustrate this by examining the case of a
localized potential fixed in the flow of a three-dimensional
dilute Bose-Einstein condensate. Specifically, we show
that a force arises from the scattering of zero-temperature
quantum fluctuations, an effect that Landau ignored in his
argument for a critical velocity. We demonstrate the exis-
tence of this force in an infinitely extended condensate at
all nonzero flow velocities (including velocities much
lower than Landau’s critical velocity).

Casimir [3] first showed that zero-temperature quantum
fluctuations in an electromagnetic (EM) vacuum give rise
to an attractive force between two closely spaced perfectly
conducting plates. A Casimir-like force, Fpgc, can be
shown to arise from the zero-point quantum fluctuations
in a dilute Bose-Einstein condensate (BEC), where infi-
nitely thin and infinitely repulsive plates immersed in a
zero-temperature three-dimensional dilute BEC replace
Casimir’s perfect conducting plates. Fggc is given by (to
leading order [4]) Fgpc = — %ﬁo h;‘f, where c, is the speed
of sound in the dilute BEC, d is the distance between the
plates, and o is the area of the plates. Both of these forces
(EM and BEC case) arise because boundary conditions are
imposed on the quantum fluctuations.

Similarly, we posit that a Casimir-like force exists on an
object in a moving dilute BEC. No direct EM analogy can
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be drawn for this situation because no absolute rest frame
(where the relative motion of an object can be measured)
exists for an EM vacuum. Nevertheless, we maintain that in
a superfluid flow at zero temperature (modeled as a weakly
interacting BEC) around a stationary object, a Casimir-like
force on the object should arise due to the imposition of
boundary conditions on the (BEC) quantum fluctuations. In
a specific case of a weak potential varying only in the flow
direction, we show that this force exists at all nonzero flow
velocities; that is, the effective critical velocity is zero for
this system, where critical velocity is defined as the flow
velocity below which there is no force on a stationary
object in the flow.

We now calculate the force arising from these quantum
fluctuations. Momentum is not, in general, conserved in
our system because the stationary object, which is de-
scribed by the potential ®(r), breaks the translational
symmetry. In general, a force on a moving object described
by a potential ®(r) can be written in second quantized
notation at zero temperature as
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where /(r) and ' (r) are field operators that describe the
weakly interacting BEC flow and obey the standard boson
commutation relations and the expectation value is taken at
T = 0. T = 0 is not well defined in the scattering problem
discussed in this Letter, so one can view this simply as a
convenient label of the quantum state that we define in
detail below.

We model the superfluid as a weakly interacting three-
dimensional condensate characterized by an interparticle
contact pseudopotential, g8 (r), where g is determined by
the 2-particle positive scattering length a . and the mass m
of the atoms such that g = 47h%a,./m. We assume the

condensate to be dilute such that \/pyal, << 1 where p, is
the condensate number density.

To calculate the force due to quantum fluctuations on a
stationary object in a superfluid flow, we assume for sim-
plicity that the object is described by a weak symmetric
potential that varies only in the flow direction (which we
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take as the x direction), i.e., ®(r) = nP(x) where O(x) =
®(—x) and 7 < 1. (The parameter i gives the order of
magnitude of the external potential.) This situation, which
can, in principle, be realized in current dilute BEC experi-
ments, is a specific case chosen to show the existence of a
finite Casimir-like force at any arbitrarily small flow ve-
locity. We place further restrictions on this potential in the
course of this Letter as needed.

Because we consider a potential varying only in the flow
direction, the integrand in Eq. (1) is only a function of the
positional variable x, which allows the simplification of the
force expression to

F.= —An foo dx<g2*(r) dd(x)
—00 dx

i) . ©
T=0
where A is the cross-sectional area of the object in the flow.
Although the lack of translational symmetry (due to the
presence of the object) makes the existence of a force
possible, it does not imply that there will necessarily be a
force. For example, if the small quantum fluctuations are
ignored, the bosonic field operator ¢ can be approximated
by the classical mean field PO whose behavior is deter-
mined by the Gross-Pitaevskii equation (GPE). Working,
as we do throughout this Letter unless specified otherwise,
in dimensionless variables in which the length scale is
normalized by the healing length given by (87pgay.)~'/2
and ¥ is normalized by JPo the GPE can be written as

[T + D(x) — w]¥O@) + PO PEOF) =0, (3)

where T'=—V* + ﬁiq% + ¢*/2, the dimensionless speed
is given by g = ¢/c;, c is the speed of the flow at x = oo,

cs = +/pog/m is the speed of sound, and u = 1 + ¢ is the
chemical potential [determined by imposing ¥ (r) = 1 at
x = oo]. The mean field force arising from the potential
®(x), given by —Any fdxqu(o)(r)lz%ff), can be shown to
be zero below a certain critical flow velocity. This critical
flow velocity (as measured far from the potential) in a
nonuniform medium is always smaller than Landau’s criti-
cal velocity in a uniform medium (which in the dilute gas is
given by the speed of sound) due to nonlinear effects such
as vortex shedding [5] or the creation of gray solitons [6].

If we go beyond the mean field approximation and take
into account quantum fluctuations, the bosonic quantum
field operator ¢ can be split into a macroscopic classical
field WV and a small quantum fluctuation operator b=
PO + . ¥ is an improved approximation of the con-
densate wave function as compared to W because it
includes the effects of the quantum fluctuations. Includ-
ing the fluctuation operator in the analysis leads to a
depletion of the ground state and a correction to the ground
state energy [7], both on the order of the diluteness pa-

rameter +/poal., which must be small in order for the
Bogoliubov theory in this Letter to be valid. While small
in dilute gases, quantum depletion and its correlations have
measurable effects (see, for example, [8]).

The force due to the boundary conditions imposed by the
potential on the quantum fluctuations is, in general, not
zero (even below the critical flow velocity in a nonuniform
system given by the GPE) and can be written as

dd(x)
dx
“)
The fluctuation operator can be expanded in terms of &;
and &}: —the quasiparticle annihilation and creation op-
erators, respectively—such that ¢(r) = Slug(r)ay —
vi(r)&,:r], where the sum excludes the condensate mode.
For our system of weakly interacting particles to be de-
scribed by the noninteracting quasiparticles, the quasipar-
ticle amplitudes, u,(r) and wvi(r), must obey the
Bogoliubov—de Gennes (BdG) equations [9],

ﬂ=—ﬂanWWWM2+@Wﬂ&ﬂﬁw

Lug(r) = (W0)2v,(r) = Eqag (1), 5)
L u(r) = (W20 (r) = —Epug(r), (6)
and the normalization condition [ d®r[|u;(r)|* —

lv,(P?] =1, where L =T+ ®(x) — p + 2|PD]2 and
k is the dimensionless momentum normalized by the heal-
ing length. The energy eigenvalue for the moving BEC
flow is E, = «/2qk, + Ep where the Bogoliubov dimen-
sionless dispersion relation for a BEC at rest is given by
Eg = kvk* + 2.

Since the BAG equations describe an effective scattering
problem for the quasiparticle amplitudes, we can solve for
u,(r) and v, (r) by specifying the incoming u;(r) and v, (r)
(below we consider only scattered states). We impose a
condition (see [10] for details) on the incoming u;(r) and
vi(r) in terms of measurable quantities far from the po-
tential that fully determine the quantum state in this prob-
lem, i.e., the quantum state used in the expectation value in
Eq. (4). Despite the fact that the state at zero temperature is
technically not well defined for this scattering problem,
this label remains a convenient way to denote the quantum
state relevant to Eq. (4) because the state is annihilated by
&. The expectation values taken with respect to this state
(orat “T = 0”’) can be written in terms of the quasiparticle
amplitudes, i.e., (T (N P(r)r_y = S lv(r).

The condensate wave function modified by the quantum
fluctuations is given by the generalized GPE (GGPE) [11]

[7 + ®@) — w00 + [WOAPEOE) — x(O )
£ 3 RloPYO0) — w e =0, @)
k

where the term proportional to u;(r)vi(r) is ultraviolet
divergent because of the contact potential approximation
and must be renormalized (see references in [12]). The
term x(r)W(r) ensures the orthogonality between the
excited modes and the condensate [12] and is given by
x(r)=>cvi(r) where c¢,= _[d3r|‘1’(1)(r)|2[‘l'<1)*(r) X
up(r) + YO (r)vi(r)]. The properties of ®(x) (described
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below) make it such that neither y(r)¥)(r) nor the renor-
malization term contribute to the dominant order of the
calculation below. Because we assume the condensate to be
dilute, the fluctuation terms are small (on the order of
Vpoal,) so the GGPE [Eq. (7)] can be approximated by
the GPE with an effective complex potential given by
() = 32l = u(r)vi(n).

To calculate the force arising from zero-point quantum
fluctuations F,, we must first solve the Bogoliubov equa-
tions for the quantum amplitudes. To obtain a finite force
we find it convenient to assume [*, dx®(x) = ®(0) =0
where ® () is the potential in Fourler space. Extracting the
trivial phase factor, i.e., uy(r) = U(x)e™®™ and v,(r) =
V(x)e™ T and working in Fourier space defined by U(x) =
[dAe™U(A) and V(x) = [dAe™V(A), the Bogoliubov
equations can be solved perturbatively to give the quasi-
particle amplitudes to first order in n as U;(k, A) =

D(A) LED sgn(vh) and V;(k A) = D) LED sgn(vF).
I'y(k, A) and T'y(k, A) are quantities easily derived from
the Bogoliubov equations but, for the sake of clarity, we
have chosen not to write out their full expressions as they
would contribute little to the discussion. The sign of the
group velocity of the reflected quantum fluctuation, de-

noted by sgn(v¥), arises from the boundary conditionsJ

\/_
ReS)‘ k
R \/—

and the contribution to the force given directly by the
quantum fluctuations is given by

82 -
Res,—;
R \/—

where Res,—, z(A) is the residue of z(A) at A = kg. The
zeroth order quantum amplitudes (for a homogeneous gas
at rest) are given by Up(k) = /(5L + 1) and V,(k) =
1(k2+1 0. 2
Fmally, to illustrate the calculation of F,, we define a
specific potential describing the stationary object in the
flow as A(A) =[P =1 for |A+ kol <A/2, [A—

kol < A/2, and zero otherwise. In real space this can be
_ §1n(xA/2)

Fcond (k)

Fiue (k) = DVo()AV (A, k), (10)

written as A(x) = 2 cos(kyx) where A is positive,
1/A is a measure of the width of the potential in real space
and kq is a measure of the typical wave number of the
potential in real space. Both A and k are normalized by the
healing length. We assume k; > A /2 so that the potential
satisfies the condition @(O) = 0. Note that as A — 0 the
potential becomes periodic in real space and delocalized;
our analysis would then no longer apply. F, peaks when
the width in Fourier space (or real space) is on the order of
the healing length, i.e., A = 1 and disappears in the local-
ized and delocalized limits.

The existence of this force is necessary but not sufficient
for the system to be dissipative. In the rest frame of the
object described by ®(r), the system conserves energy

SVEHAA/ (A2 +2 — 2q2){[U0(k)<1

where we exclude exponentially growing scattered waves
and exclude incoming scattered waves due to causality.

The group velocity of the reflected wave is given by vR =

gfk where the wave number of the reflected mode is given

by Agp = k, + kg and ky, is given by the nontrivial real root

of the characteristic equation of the coupled Bogoliubov

equations Clk, A) = A[A3 + 4k, A% + (4K2 + 2k* +

2 — 2¢P)A + 4k (K> + 1) + 242gER] = 0. Assuming

k, = kf, then v® > 0if —1 < f < f,and v8 <0if f. <
2

f <1 where f, = _ji\g::?)'

Next, these quasiparticle amplitudes can be used to de-
termine the effective complex potential (x) in the GGPE
to give W((r). Then, integrating over all momenta of the
quantum fluctuations, the Casimir-like force due to the
quantum fluctuations F, can be divided into two contribu-
tions as seen in Eq. (4), given at the dominant order in 7 as

Fx == [d3k[Fcond(k) + Fﬂuc(k)]: (8)

where F, = F,/n?pyAy/poal. and the zeroth order inter-
action pressure is given by p, = gp3/2. The contribution
to the force due to the condensate modified by the quantum
fluctuations is given by

#20) —avin 700 + v (1-50)0,0.0], ©

[because of the time translational symmetry. Therefore,
the usual picture of an ““irreversible”” phenomenon with
dissipation in the ordinary sense does not apply. A numeri-
cal solution of the coupled GGPE and BdG equations in the
time-dependent lab frame should verify the existence (or
nonexistence) of dissipation in this system. Assuming this
force calculated in this Letter is dissipative, i.e., a drag
force, then the system would want to minimize its energy
as a function of flow speed, i.e., relative speed between the
flow and the stationary object. In the above example the
grand canonical energy decreases with increasing flow
speed, the opposite of the usual situation. It follows from
this that the flow would accelerate in the presence of
dissipation, implying a negative drag force similar to the
behavior of a moving gray soliton [13]. At larger k; such
behavior is exhibited by F, as seen in Fig. 1. The behavior
of F, at larger flow velocities and at smaller k, (or, equiv-
alently, larger characteristic wavelengths of the potential in
real space) suggests a sign change of the effective mass as
occurs in moving matter wave packets in a periodic poten-
tial. It is also perhaps instructive to recall the nontrivial and
highly geometry-dependent sign of the Casimir force in the
EM vacuum (for example, a setup of parallel conductors in
an EM vacuum leads to an attractive force while a cubical
cavity leads to a repulsive force).

Even though this Casimir-like force exists for speeds
much lower than the speed of sound, which in
Bogoliubov’s theory is equal to Landau’s critical velocity
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FIG. 1.

F./nm*poA/poas., acting on a stationary localized potential
described by the parameters k, and A as a function of the
mach number of the flow, ¢ (measured far from the potential,
i.e., at x = 00), for three different values of k: ko = 5.0 is given
by the solid line, ky = 2.4 is given by the dash-dotted line, and
ko = 1.8 is given by the dashed line. The width of the potential
in real (and Fourier) space is equal to the healing length, i.e.,
A = 1. (kg and A are both normalized by the healing length.)

The scaled force due to quantum fluctuations, F, =

for the onset of dissipation, this force does not explicitly
violate the spirit of Landau’s principle [14]. Let us recall
that Landau’s principle states that above a critical velocity
a system can lower its energy by the creation of quasipar-
ticles [2]. In our analysis, however, we do not assume that
any quasiparticles are created; i.e., the system remains at
T = 0 in the sense defined above. This force arises from
the scattering of zero-temperature quantum fluctuations
and is not caused by the creation of quasiparticles, which
must satisfy the Landau criterion; instead, it is caused by
the changing nature of the eigenstates of the quantum
fluctuations, akin to the original Casimir force between
two conductors.

In this Letter, we have shown in a specific example that a
finite Casimir-like force arises in a moving BEC at T = 0.
In this case, unlike for the nucleation of vortices, there is no
free energy barrier to cross and, at least for this particular
situation, the effective critical velocity is zero. Since a non-
zero effective critical velocity does exist at the dominant
order (on the order of the mean field), one would expect to
find the semblance of a nonzero critical velocity as seen in
[15], even though, at least in the case considered here, the
actual critical velocity for the system might be zero.

We expect this Casimir-like force to act upon any den-
sity perturbation—including those created by laser fields
[15], untrapped impurities [16], vortices, etc.—moving
relative to the condensate. We also expect this force to be
more apparent in condensates of lower dimensions due to
the enhancement of quantum fluctuations. Finally,
although the present analysis assumes a dilute gas and
does not strictly apply to dense systems, we do expect a
Casimir-like force from quantum fluctuations also to exist
for superfluid liquid helium. In fact, the Casimir-like force
might have a stronger effect in liquid helium since quan-
tum fluctuations dominate the helium condensate at 7 = 0.

We conclude by noting that although we have discussed
a force that exists on a stationary object in a superfluid

moving at any arbitrarily small velocity, these results are
not inconsistent with the existence of persistent superfluid
currents in toroidal geometries. In this Letter where we
consider an infinite medium, the Casimir-like force arises
from the nonlocal perturbation of the scattered quantum
fluctuations. These scattered fluctuations can be seen to
transport energy far from the potential similar to wave-drag
situations in classical fluids. However, in a finite geometry
such as a superflow in a torus the scattered fluctuations will
interact with the localized object. In the steady state, we
expect these backscattered waves to eventually cancel out
the effect discussed in this Letter and thus remain consis-
tent with a persistent superflow. In such a system, this
Casimir-like effect would manifest itself not as continual
dissipation at arbitrarily low speeds, but rather as a new
time scale (expected to be proportional to the characteristic
length of the system over the speed of sound) over which
the flow becomes dissipationless. The scattered fluctua-
tions should also lead to a local change of temperature
(assuming higher order interactions among quasiparticles),
which could, in principle, be observed [4].
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