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Emergence and Decay of Turbulence in Stirred Atomic Bose-Einstein Condensates
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We show that a ‘‘weak’’ elliptical deformation of an atomic Bose-Einstein condensate rotating at close
to the quadrupole instability frequency leads to turbulence with a Kolmogorov energy spectrum. The
turbulent state is produced by energy transfer to condensate fragments that are ejected by the quadrupole
instability. This energy transfer is driven by breaking the twofold rotational symmetry of the condensate.
Subsequently, vortex-sound interactions damp the turbulent state leading to the crystallization of a vortex
lattice.
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FIG. 1. The condensate energy (black line) and energy of the
outer cloud (dashed line), defined as the region with n < 0:2n0,
as a function of time, with a trap rotation frequency � �
0:77!r. The four distinct stages of the evolution (see text) are
indicated.
Two-dimensional (2D) turbulence has been explored in
diverse areas such as soap films [1], magnetohydroynamics
[2], and meteorology (see [3] and references therein), and
can often display additional features not present in 3D [4].
However, the complexities of real fluids mean that the
theoretical predictions are often at odds with observed
spectra. In this regard there may be some advantages in
studying superfluids where the absence of viscosity and the
quantization of vorticity can simplify the theoretical pic-
ture. For example, superfluid turbulence in liquid helium
[5] is found to exhibit analogous features to classical
turbulence, in particular, a Kolmogorov energy spectrum
[6]. Even more amenable to theoretical description are
atomic Bose-Einstein condensates (BECs) [7]. In addition,
atomic BECs allow the flexibility of studying the transition
between 2D and 3D turbulence.

Recent experiments on atomic BECs have generated
vortex lattices by thermodynamically condensing a rotat-
ing thermal cloud [8] and mechanical rotation of the con-
densate in an anharmonic trap [9–11]. In the latter case, a
quadrupolar collective mode of the condensate is excited.
A dynamical instability [12,13] leads to the nucleation of
vortices, which subsequently crystallize into a lattice con-
figuration. The time scale for vortex lattice formation has
been shown to be insensitive to temperature [11,14], sug-
gesting that the process is a purely dynamical effect. The
formation of the lattice has been simulated using the time-
dependent Gross-Pitaevskii equation (GPE) [15–18]
(although [15,16] required the inclusion of damping ef-
fects). However, questions remain over the dynamics in-
volved, for example, how the dynamical instability seeds
vortex nucleation, what is the damping mechanism leading
to the crystallization of the lattice, and the role of dimen-
sionality in the process.

In this Letter, we present evidence that 2D turbulence is
a key feature of current experiments on vortex lattice
formation in atomic BECs. In particular, we show that
the route to lattice formation can be divided into four
distinct stages, as illustrated in Fig. 1. These stages are as
follows.
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Fragmentation.—The quadrupolar mode breaks down,
ejecting energetic atoms to form an outer cloud.

Symmetry breaking.—The twofold rotational symmetry
of the system is broken in a macroscopic manner, allowing
the rotation to couple to additional modes, thereby inject-
ing energy rapidly into the system.

Turbulence.—A turbulent cloud containing vortices and
high energy density fluctuations (sound field) is formed,
with a Kolmogorov energy spectrum.

Crystallization.—The loss of energy at short length
scales coupled with the vortex-sound interactions [19,20]
allow the system to relax into an ordered lattice.

Our analysis is based on the classical field method
whereby the GPE is used to describe both the condensate
mean-field  and fluctuations [21]. Fluctuations in the
initial state speed up the evolution through the four stages
but do not change the qualitative behavior. For illustrative
purposes we use an initial state without excitations. The
rotating trap strongly polarizes the dynamics along the z
axis, such that 2D dynamics in the rotating plane dominate
the system. Indeed, we have verified that the same results
are obtained in the flattened, quasi-2D geometry by solving
the 3D GPE. We therefore proceed in the 2D limit by
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FIG. 2 (color online). Fragmentation: (a) Snapshots of the
condensate density in the range �0–0:05n0� at times t 	
(i) 400, (ii) 800, (iii) 1200, and (iv) 6000 ��=c�. Each plot
represents a region ��30; 30��
 ��30; 30�� (while the numeri-
cal box is much larger). Dark represents high density. (b) Total
condensate energy (solid line), energy of inner cloud (dotted
line), and energy of outer cloud (dashed line).
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solving the computationally advantageous 2D GPE, as in
our previous work [19]. We have performed simulations
for a range of condensate sizes, and various grid and box
sizes, and find the same qualitative results throughout. We
characterize the state of the system in terms of the energy.
The instantaneous condensate energy at time t is given by
the GPE energy functional,
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and from this we subtract the corresponding energy of the
initial state. Here V is the external potential, m is the
atomic mass, and g � 4�@2Na=m, where N is the number
of atoms and a is the s-wave scattering length.

To apply a rotation we use a ‘‘weakly’’ elliptical poten-
tial similar to the experiments [9,11] (the stirring potential
used in Ref. [10] is strongly anharmonic). The potential is
written in the laboratory frame (rather than the rotating
frame [15,16,18]) as

V�t� �
1

2
m!2

r��x2 � y2� � "�x cos�t� y sin�t�2

� "�x sin�t� y cos�t�2�: (2)

The first term represents the static harmonic trap with
transverse frequency !r. The second and third terms rep-
resent the elliptical trap perturbation rotating at frequency
�. The trap ellipticity is taken to be " � 0:025 [9].

Our units of length, time, and energy are the healing
length � � @=

��������
m�
p

, ��=c�, and the chemical potential

� � n0g. Here c �
�����������
�=m

p
is the Bogoliubov speed of

sound, and n0 is the peak condensate density. For a typical
87Rb BEC, the units of distance and time correspond to
�� 0:3 �m and ��=c� � 10�4 s, respectively.

Fragmentation.—At t � 0, the rotation is turned on. The
rotating trap couples energy into the condensate by excit-
ing a quadrupolar shape oscillation, while the axes of the
quadrupole rotate at the trap rotation frequency �. This
excitation mimics rotation yet the system remains irrota-
tional. In the radially symmetric system, the quadrupole
mode is predicted to have a resonant frequency at � �
!r=

���
2
p

[22], but this is shifted slightly by the ellipticity.
Away from the resonance the quadrupole oscillations have
reduced amplitude and are stable. The condensate cycles
between the initial circular state and a higher energy
elongated state, but over a complete cycle there is no net
increase in energy. Such quadrupole oscillations have been
observed experimentally [23].

The condensate is predicted to be dynamically unstable
at the quadrupole resonant frequency [13]. The instability
arises because the amplitude of the mode becomes so large
that the quadrupolar irrotational flow can no longer be
supported. As the condensate relaxes from the point of
maximum elongation, the fluid cannot adjust sufficiently
quickly back towards the center of the trap. This results in
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the shedding of fluid from the ends of the condensate
forming low density tails and giving the condensate a
spiral shape [Fig. 2(a)(ii)]. The ejected material collapses
back onto the condensate edge, forming phase dislocations
with the main condensate. This generates surface waves
and ‘‘ghost’’ vortices [15,17]. An outer, low density
(�0:1n0) cloud is formed [Fig. 2(a)(iii)]. After the conden-
sate has shed material [Fig. 2(b), solid line], its energy no
longer decreases to the initial value—energy has been
transferred irreversibly into the condensate. We monitor
the relative evolution of the outer, low density cloud and
the inner, high density condensate by defining the outer
cloud to be where the density is less than a certain value,
taken here to be 0:2n0. The injected energy goes primarily
into the outer cloud [Fig. 2(b), dashed line]. Note that,
although the energy of the inner and outer clouds are
comparable, the outer cloud contains only about 10% of
the total atoms, and therefore the average energy per atom
is considerably higher. Subsequently, the inner cloud con-
tinues to undergo quadrupole oscillations and eject small
fragments, as indicated by the energy curves shown in
Fig. 2(b). Also, the outer cloud develops more structure
at short length scales [Fig. 2(a)(iv)].

For the parameters employed here, we observe the frag-
mentation of the cloud (and ultimately the formation of a
vortex lattice) for rotation frequencies in the range 0:72<
�=!r < 0:78, which is in reasonable agreement with the
experimental results of Madison et al. [9]. Outside this
range the quadrupole mode is stable, and the width of the
unstable region increases with the trap ellipticity ", which
is consistent with the experimental observations of Hodby
et al. [11].

Symmetry breaking.—The condensate and potential
have a twofold rotational symmetry [clearly visible in
Fig. 2(a)]. In the experiments [9,11] this symmetry is
absent. Eventually in the simulations, an asymmetry grows
out of the numerical noise generated by modeling a rota-
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tion using a static square grid. We characterize this asym-
metry in terms of an asymmetry parameter defined as

� �

R
�j �x; y�j2 � j ��x;�y�j2�dxdyR

j �x; y�j2dxdy
: (3)

This asymmetry parameter [Fig. 3(b), solid line] grows
exponentially over time. When it reaches macroscopic
levels (�� 0:1), we enter a symmetry-breaking phase at
t� 8000��=c�. From then on, additional modes can be
excited, and energy is rapidly coupled into the system
[Fig. 3(a), solid line]. This energy predominantly excites
the outer, low density cloud, as shown in Fig. 1 (dashed
line). The condensate density and phase during this stage
are shown in Figs. 3(c) and 3(d). The original twofold
rotational symmetry is now clearly broken. Towards the
end of this stage the outer cloud strongly couples to, and
merges with, the inner condensate. Energy and angular
momentum become transferred to the inner cloud, the
quadrupole mode finally breaks down, and vortices be-
come nucleated in the higher density regions.

In experiments, symmetry breaking will occur due to,
for example, the thermal cloud, quantum fluctuations, trap
imperfections, and fluctuating fields. We model the effect
by allowing the trap center to randomly jump, or jitter,
within a region ���;��� 
 ���;���. Figures 3(a) and
3(b) show the results for trap jitters of � � 0:0001 (dashed
line) and 0.1 (dotted line). We observe the same qualitative
behavior as in the absence of the jitter, although the macro-
scopic symmetry breaking occurs earlier when jitter is
added. Even for an extremely small jitter (� � 0:0001�,
3 orders of magnitude smaller than the grid size) the effect
is significant, thereby demonstrating the importance of
symmetry. Symmetry-breaking allows vortices to enter
the condensate one by one, rather than in opposing pairs
[15], which reduces the threshold energy for vortex
nucleation.
FIG. 3 (color online). Symmetry breaking: Evolution of (a) to-
tal condensate energy and (b) condensate asymmetry parameter
for no trap jitter (solid line), and trap jitters of � � 0:0001
(dashed line) and � � 0:1 (dotted line). (c)–(d) Snapshots of
the total condensate density and phase, respectively, during the
symmetry-breaking stage at t � 9600��=c� in the absence of trap
jitter.
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Turbulence.—Following the injection of energy into the
condensate during the symmetry-breaking stage, a highly
excited and energetic condensate containing randomly
positioned vortices is formed, as shown in Figs. 4(a) and
4(b). We analyze this stage of the evolution by calculating
the energy spectrum, shown in Fig. 4(c). During the turbu-
lent phase the system closely follows a Kolmogorov energy
spectrum E�k� / k�5=3 over a range of k values, as shown
in Fig. 4(c) (bold line) for t � 11 000��=c�. Such behavior
is a key signature of classical turbulence and also occurs in
models of superfluid turbulence [6]. The departure from a
k�5=3 law occurs at an upper bound of k 	 2�2�=��,
corresponding to the characteristic length scale of vortex-
sound interactions [20], and a lower bound of k 	
0:3�2�=��, corresponding to the size of the condensate.
An additional feature of 2D classical turbulence is that the
spectrum is predicted to show k�3 behavior following the
k�5=3 region [4]. However, we observe a k�6 dependence in
this range. The power spectrum in the fragmentation stage
[Fig. 4(a), intermediate gray] and the succeeding crystal-
lization stage [Fig. 4(a), light gray] do not show a k�5=3

behavior.
Crystallization.—The turbulent state contains a dense

sound field and vortices. In previous work we have shown
how vortices can both radiate and absorb sound waves in a
Bose-Einstein condensate [19,20]. We propose that this
vortex-sound interaction enables the randomly positioned
vortices in our rotating condensate to crystallize into a
lattice.

To demonstrate the transfer of energy from the sound
field (density fluctuations) to the vortices, we divide the
energy into a component due to the vortices EV and a
component due to the sound field ES. To approximate EV

at a particular time we take the real-time vortex distribu-
tion, and impose this on a separate state with the same
potential and number of particles. By propagating the
GPE in imaginary time, we obtain the lowest energy state
with this vortex distribution but without sound. The energy
of this state is EV. The sound energy is then defined as
FIG. 4 (color online). Turbulence: Snapshots of the turbulent
(a) condensate density and (b) phase at t � 11 000��=c�. The
vortices are characterized by a node in the density and an
azimuthal phase change of 2�. (c) Energy spectrum in k space
during (i) the turbulent stage at t � 11 000��=c� (bold line);
(ii) fragmentation at t � 8000��=c� (intermediate gray line); and
crystallization at t � 20 000��=c� (light gray line). The turbulent
Kolmorogov behavior Ek / k�5=3 is indicated (dot-dashed line).
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FIG. 5 (color online). Crystallization: (a) Total condensate
energy (solid line), sound energy (dotted line), and vortex energy
(dashed line). Snapshots of the (a) total condensate density
�0–n0� and (b) low density �0–0:05n0� at times (i) 20 000 and
(ii) 100 000��=c�.
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ES � E� EV. During the fragmentation, symmetry-
breaking, and turbulent stages, both sound energy
[Fig. 5(a), dotted line] and vortex energy [Fig. 5(a), dashed
line] are fed into the system. At the start of the crystalli-
zation phase the sound energy is considerably higher than
the vortex energy. However, as time progresses the sound
energy decreases with this energy being transferred to the
vortices. Figures 5(b) and 5(c) show the condensate density
at the beginning and towards the end of the crystallization
phase. We see that the conversion of sound energy into
vortex energy is associated with the ordering of the vortices
from a disordered distribution to a lattice configuration and
a smoothing of the condensate profile [Fig. 5(b)]. Further-
more, the outer cloud shrinks [Fig. 5(c)]. By the time t �
100 000��=c� the vortex energy is substantially greater
than the sound energy. At this point we observe a well-
ordered vortex lattice.

In our simulations, the finite grid size sets a maximum
value in momentum space, with higher k modes having
zero occupation [21]. We have imposed reduced values of
the momentum cutoff and consistently observe lattice for-
mation, with no marked effect on its time scale. This
further supports the idea that the vortex lattice formation
is independent of thermal effects.

In the vortex lattice experiments [9,11], the lattices are
observed after up to 1 s of trap rotation. In our simulation, a
noisy lattice has formed by t� 2 s [Fig. 5(b)(i)], while it
takes several more seconds for the vortices to settle into a
clean lattice. However, as shown in Fig. 3, the time scale of
the fragmentation stage is sensitive to the degree of
symmetry-breaking effects present in the system, as well
as the trap rotation frequency and ellipticity. One would
therefore expect that in a real system, with all its inherent
imperfections, the time scale for this stage will be reduced.

Note that if the rotation is terminated before the peak
energy has been coupled into the system, the lattice still
forms, albeit at a lower energy. This allows control over the
ultimate number of vortices in the lattice.

In summary, we have shown that ‘‘stirring’’ atomic
condensates generates turbulence. We verify that a k�5=3
14530
power law is observed for two-dimensional superfluid
turbulence. The turbulent state subsequently evolves into
a vortex lattice by vortex-sound interactions. Future work
will focus on turbulence in spinor systems and the effect of
dimensionality on the turbulence spectrum.
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