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Hyperelasticity, Viscoelasticity, and Nonlocal Elasticity Govern Dynamic Fracture in Rubber
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Dynamic cracks in rubber can spontaneously oscillate under certain biaxial strain conditions [R.D.
Deegan et al., Phys. Rev. Lett. 88, 014304 (2002)]. We have found that this unusual phenomenon can be
understood from the unique mechanical properties of rubber: hyperelasticity, viscoelasticity, and nonlocal
elasticity. While all these are important, the decisive role of nonlocality needs to be particularly
emphasized. Through numerical simulations with a lattice model, we have quantitatively reproduced

the experimental results.
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Introduction.—Upon a balloon popping, the edges of
some of the broken pieces are often rippled. This suggests
that the cracks tearing the material must be oscillating
during propagation. This simple yet amazing phenomenon
constitutes a fracture pattern distinct from the more com-
mon one where cracks in brittle materials branch upon
losing stability. Despite its fundamental importance, how-
ever, it had not been investigated seriously until four years
ago when Deegan and co-workers systematically carried
out the first fracture experiments with rubber sheets [1]. It
was found that the fracture pattern in rubber is solely
determined by the applied strain condition, and at certain
biaxial strains cracks would propagate along sine-wave-
like paths.

This very unusual instability of dynamic fracture poses a
new challenge to the study of crack dynamics. Henry and
Levine first investigated this problem using a phase field
model [2]. The phenomenon was qualitatively reproduced,
but a quantitative comparison to the experiments was
lacking. Furthermore, the details of the fracture process
cannot be obtained from this kind of model, and some of
the results are in doubt in our opinion. Recently, Marder
developed a shock wave theory that can explain the super-
sonic rupture but not the crack oscillation [3].

This Letter presents a numerical study of a lattice model,
from which we have found some clues for the first time to
quantitatively explain the oscillating instability of fracture
in rubber.

Lattice model.—Lattice models have been frequently
used to study fracture and phase transition problems since
the seminal work of Slepyan [4—13]. The inherent discrete-
ness makes this type of model naturally suitable for these
problems where the continuum approximation might be
inappropriate.

Our lattice model takes into account the intrinsic me-
chanical properties of rubber: hyperelasticity, viscoelastic-
ity, and nonlocal elasticity. The first two terms have already
been included in Marder’s lattice model [3]. However, it
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seems to us that, although the importance of the nonlocal
effect has been recognized in a variety of mechanical
problems such as micron-scale plasticity [14—16] and elas-
tic or plastic fracture [16—19], it has never been considered
in the studies of fracture of hyperelastic materials.

The model for a rubber sheet is a triangular lattice on
which the mass points are connected with massless bonds
to nearest (NN) and next-to-nearest neighbors (NNN). The
interactions between the NNNs represent nonlocal effects.
At the continuum level, such a model corresponds to a
strain gradient nonlocal theory [13,20,21] which takes into
account the contributions to the strain energy from both
strain and strain gradient (thus introducing a material
length scale). To account for the hyperelasticity and visco-
elasticity, the massless bonds are taken as rubbery springs
with dashpots in parallel (Kelvin viscosity). The force of a
bond is the sum of the elastic and viscous components, the
values of which are Fg,gic = Aola(A — 1/A%) + b(1 —
1/A3)] and Fyious = Agmv/ly, respectively [22]. The re-
sultant force on a mass point is obtained by adding up all
the forces on it by its neighbors. The motion of mass points
is governed by Newton’s second law. The equations of
motion are integrated numerically using the velocity
Verlet algorithm.

To simulate a fracture experiment, the lattice strip is
stretched to a desired biaxial strain state (e,, &,) with the
four edges being fixed, a seed crack is then made by simply
removing several mass points somewhere, and at each time
step, once the elongations of any bonds exceed a critical
value As, they are deleted permanently. In addition, we
follow Marder [3] to increase A behind the crack to keep
its back surface intact. But even with this, a fraction of
mass points will still detach from an oscillating crack. To
account for their possible collisions with any other parts of
the lattice, additional neighbor relations are found using
the link-cell algorithm from molecular dynamics.

Simulation results.—Figure 1 shows one of our simu-
lated cases where an oscillating fracture path has been
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quantitatively reproduced [23]. In fact, through extensive
computer experiments on our model material, we have
found some clues to the understanding of the fracture
oscillation. And by adjusting the model parameters, we
are able to control not only the fracture path and speed but
also the amplitude and wavelength of the oscillation. In
this way, we have quantitatively reproduced most of the
experimental results [1] (maximum error is less than 20%,
while some data are in perfect agreement).

Mechanisms of crack oscillation.—In order to under-
stand how the crack oscillation takes place, we have care-
fully investigated the near-tip stress and velocity fields and
the issue of supersonic propagation. The opening stress
fields in both the oscillating and the nonoscillating cases
are kidney shaped, showing no qualitative difference. The
velocity fields appear more suggestive (see Fig. 2). We
have found in all the simulated cases (oscillating and non-
oscillating) a negative velocity zone (NVZ) ahead of the
crack tip in which the mass points move in the opposite
direction of the crack propagation. The NVZ appears to
induce shear motion that should be important for the tip
oscillation. Furthermore, the velocity field is symmetric for
a straight crack, but becomes asymmetric upon the crack
starts to oscillate (in some cases there are even vortices
near the tip). Another thing worthy of noting is a small
zone behind the crack tip in which the mass points move
rapidly along the crack direction. Such a zone can be
regarded as a process zone and exists only in the case of
oscillation. It fades for a straight crack.

Previous studies have guessed that the crack oscillation
may be connected to the supersonic propagation [3,24].
The wave speeds used to compare with the crack speeds
were either measured or calculated at the rubbery state with
no viscous effect, and it was shown that both the oscillating
and nonoscillating cracks were faster than the shear wave.
But the limited experimental data cannot exclude the pos-
sibility of subsonic rupture (oscillating or not). Indeed, at
least in our numerical studies (despite the model being
imperfect [25]), both oscillating and nonoscillating cracks
can be supersonic as well as subsonic. Therefore, we tend

to believe that the supersonic state is neither a necessary
nor a sufficient condition for the oscillation. However, it is
hard to draw a conclusion without experimental proof of
subsonic oscillation.

Effects of material properties.—To see the effect of
nonlocality, we have tried removing the NNN interactions
from our model. Then there is no way to induce oscilla-
tions, and cracks can only propagate straight just as in
Marder’s study [3] where only the NN interactions were
included. In this situation, we have observed a qualitative
change in the velocity and stress fields. That is, the nega-
tive velocity zone disappears [26], and the opening stress
field is less concentrated and no longer kidney shaped. As
mentioned earlier, a lattice model with NNN interactions is
equivalent to a strain gradient nonlocal theory at the con-
tinuum level. The large strain gradient near a crack tip can
elevate the strain energy and stress near the tip [19], which
in this study should be crucial for the crack oscillation.

Regarding the effect of hyperelasticity, it is found that
the nonlinearity of the deformation is not crucial in repro-
ducing the oscillation. In fact, the bonds in our lattice
models are just weakly nonlinear at large strains, and
even when they are made ideally linear, crack oscillation
still can occur. In contrast, the amount of the deformation
appears much more decisive. It is found that at small
strains (e.g., several percent) unstable cracks always
branch other than oscillate, which is in accord with the
more common fracture pattern in brittle materials.

For viscoelasticity, we find its effect is strongly coupled
with that of the discreteness of the lattice. We define a
dimensionless parameter { = 7/T to represent this com-
bined effect. Here 7 = 7/a is the retardation time that has
a broad spectrum for a viscoelastic material, and 7 =
d/(a/p)"* is the time for stress wave traveling a distance
of d (lattice spacing). Our results show that both the
normalized amplitude and the wavelength (by d) of the
oscillation decrease with decreasing { (by decreasing 7 or
increasing d), and when ¢ becomes smaller than a critical
value, the oscillation is inhibited absolutely and the crack
will travel straight. Here we note that, according to the

FIG. 1.

Simulation results at applied strains &, = 1.3, &, = 1.8. Shown here is the lattice strip in full size at 5.56 ms. Together shown

is the oscillating fracture path that in steady state is a sinusoid. The crack tip is defined on the rightmost mass point that has lost any 3
of its 12 neighbors. The cross marks the seed crack. The input parameters are p = 944 kg/m?, a = 0.1 MPa, b = 0.15 MPa, gxny =
3nnn = 196.875 Pa - s, d = 0.625 mm, and Ay = 3.05. The simulated wavelength and amplitude of the oscillation are 2.3 and
0.17 cm (converted to the unstrained state), respectively, while the experimental results were about 2.1 and 0.175 cm [1]. The steady
crack speed is 48 m/s (or 20.9 m/s in Lagrangian frame), being in the range of the experimental measurements [1].
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FIG. 2. (a) Magnification of the near-tip region of Fig. 1. Note
the wedgelike shape of the crack. (b) The velocity field of the
region inside box A in (a). Note the backward motion and the
vortex. (c) The velocity field of the region inside box B in (a).
We regard this region as the process zone. Note the rapid forward
motion.

phase field model [2], the wavelength of the oscillation was
not significantly affected by the viscosity, which we think
physically unreasonable.

The effect of the viscosity can be understood as the
following. de Gennes [27] has proposed three distinct
zones along with the cohesive zone at a crack tip propagat-
ing in a viscoelastic solid, i.e., an unrelaxed glassy zone, a
viscous dissipation zone, and a fully relaxed rubbery zone.
The size of the glassy zone equals the crack speed multi-
plied by time 7; thus with 7 decreasing the glassy zone
shrinks and the dissipation zone surrounding it extends
closer to the crack tip. The result is that more energy is
dissipated near the tip and the oscillation is suppressed.

The dependence of the oscillation upon d seems more
confusing, as normally the “mesh size” is just a numerical
quantity and the simulation results should converge if the
“mesh” is fine enough. Nevertheless, the lattice spacing in
lattice model must not be read in this way. In fact, the
situation here is very much similar to the virtual internal
bond (VIB) modeling of fracture where the ‘““mesh size” is
a physical quantity representing a certain physical length
scale [28,29]. In conventional finite element simulation of
fracture, a length scale is usually introduced via a cohesive
zone so the mesh size is a numerical quantity only [30].
However, in the lattice or VIB model for fracture no
physical length scale is explicitly assigned, so it must
adhere to the “mesh size.” In fact, the lattice spacing in
this study corresponds to the characteristic length (or ma-
terial length) that is present in any nonlocal continuum
theory [13,20,21].

At this point, the physical meaning of { becomes evi-
dent. That is, there are two characteristic times (or lengths)
in our model (associated with viscosity and nonlocality,
respectively), and it is the ‘“‘competition” between them
that determines the crack oscillation. It also becomes clear
why a lattice model containing only NN interactions can-
not reproduce crack oscillation. Such a model and its
continuum counterpart (e.g., in Ref. [3]) are scale indepen-
dent and incorporate no material lengths, hence cannot
bring out the apparent length scales (wavelength and am-
plitude) in an oscillating fracture path.

Discussion.—In this study, 7, d, and /\f are the key
parameters associated with the fracture. At first glance,
they seem to be material constants so that a single set of
values will suffice to reproduce all the experiments under
different strain conditions. Nevertheless, we have had to
adjust the values of them with the applied strains to repro-
duce the experimental results. To understand this, we note
that both the viscoelastic and nonlocal responses are in-
trinsically multiscale, so 1 and d indeed can have multiple
values. Obviously, if a model includes a sufficient number
of n’s and d’s that cover the entire time and length scales,
there will be no need to modify their values with the
applied strains. However, any realistic model can take
only a limited number of 7’s and d’s. Fortunately, under
a given strain condition, it appears that only a few 7’s and
d’s (probably only one 7 and one d) are dominant, so a
model including even a single 1 and d can be adequate. Of
course, then their values must be different at different
strain conditions. Concerning the dependence of A; on
the strain state, Marder has given some explanation [3].
We believe that a certain applied strain condition will
induce certain microstructural changes, which then deter-
mine certain A, and the dominant 7 and d.

At this point, the roles of the applied strain condition can
be summarized as follows: providing the energy for frac-
ture, building large deformation that is necessary for the
oscillation, and “‘selecting” the “‘right” values of 7, d, and
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Ay. It is through all of these that a given strain condition
“selects” a unique fracture pattern from many possible
patterns [1].

The last issue to note is the influence of the sample width
on the crack propagation. A problematic result from the
phase field model [2] is that the wavelength scaled linearly
with the sample width, whereas the relation we have seen
is not this simple. In fact, it is found that the crack will
oscillate only when the sample is wide enough, and then
the wavelength and amplitude indeed increase with in-
creasing sample width, but not linearly, till saturation.

Conclusion.—We have created a lattice model for ex-
plaining the oscillating fracture paths in rubber. It is estab-
lished that the dynamic fracture of rubber is essentially
governed by hyperelasticity, viscoelasticity, and nonlocal
elasticity. While all these are important, the most important
finding of this work is the crucial role of nonlocal effects in
at least some aspects of dynamic fracture.

Our study calls for the development of a gradient-type
nonlocal theory of rubber. The theory should reduce to a
local theory when the strain gradient is zero. Perhaps the
simplest way to do so is modifying the ‘“local” Mooney-
Rivlin theory by adding gradient terms to the strain energy.
With such nonlocal theory at the continuum level, one will
be able to construct an even better lattice model for study-
ing the dynamic rupture of rubber.

Finally, even though we know how to control the motion
of a crack, it still is unclear why it would spontaneously
oscillate under the right condition. We believe that it would
be profitable to further study this problem with the theory
of pattern formation [31].
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