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Example of a Physical System with a Hyperbolic Attractor of the Smale-Williams Type

Sergey P. Kuznetsov
Institute of Radio-Engineeing and Electronics of RAS, Saratov Division, Zelenaya 38 Saratov, 410019, Russia

(Received 18 March 2005; published 28 September 2005)
0031-9007=
A simple and transparent example of a nonautonomous flow system with a hyperbolic strange attractor
is suggested. The system is constructed on the basis of two coupled van der Pol oscillators, the
characteristic frequencies differ twice, and the parameters controlling generation in both oscillators
undergo a slow periodic counterphase variation in time. In terms of stroboscopic Poincaré sections, the
respective 4D mapping has a hyperbolic strange attractor of the Smale-Williams type. Qualitative
reasoning and quantitative data of numerical computations are presented and discussed, e.g., Lyapunov
exponents and their parameter dependencies. A special test for hyperbolicity based on analysis of
distributions of angles between stable and unstable subspaces of a chaotic trajectory is performed.
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Mathematical theory of chaotic dynamics based on a
rigorous axiomatic foundation exploits a notion of hyper-
bolicity, which implies that all relevant trajectories in
phase space of a system are of saddle type, with well-
defined stable and unstable directions [1–4]. Dissipative
hyperbolic systems contracting the phase space volume
manifest robust strange attractors with strong chaotic prop-
erties. The robustness (structural stability) [1,2,5] implies
insensitivity of the motions with respect to variations of
dynamical equations. In particular, Cantor-like structure of
the hyperbolic strange attractor persists without qualitative
changes (bifurcations), at least while the variations are not
too large. The largest Lyapunov exponent depends on
parameters in smooth manner. Textbook examples of these
robust strange attractors are artificial mathematical con-
structions associated with discrete-time models, e.g., the
Plykin attractor and Smale-Williams solenoid.

It seems that the mathematical theory of hyperbolic
chaos has never been applied conclusively to any physical
object, although concepts of this theory are widely used for
interpretation of chaotic behavior of realistic nonlinear
systems. On the other hand, feasible nonlinear systems
with complex dynamics, such as chaotic self-oscillators,
driven nonlinear oscillators, Rössler model, etc., do not
relate to the true hyperbolic class [4,6,7]. As a rule, ob-
servable chaos in these systems is linked with a so-called
quasiattractor, on which chaotic trajectories coexist with
stable orbits of high periods (usually indistinguishable in
computations at reasonable accuracies). A mathematical
description of quasiattractors remains a challenging prob-
lem, although in physical systems the nonhyperbolicity is
masked effectively due to presence of noise. In a few cases,
e.g., in Lorenz model in some appropriate domain of the
parameter space, dynamics is proved to be quasihyperbolic
(with restrictions concerning violation of axiomatic state-
ments of hyperbolicity in some detail) [8,9].

I am aware of a few works which discuss examples of
true hyperbolic dynamics in systems governed by differ-
ential equations. One relates to a system called triple link-
age, which allows description in terms of motion on a
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surface of negative curvature in a frictionless case. In the
presence of dissipation and feedback, it is expected to
manifest a hyperbolic chaotic attractor [10]. In Ref. [11]
the author constructs an artificial 3D flow system possess-
ing an attractor of Plykin type in the Poincaré map. This
example definitely looks too complicated to be realizable
as a physical device. Finally, in Ref. [12] the authors argue
in favor of the existence of an attractor of Plykin type in a
3D flow system motivated by neural dynamics.

In this Letter, I suggest a simple and transparent example
of a nonautonomous flow system, which apparently mani-
fests a hyperbolic strange attractor. In terms of strobo-
scopic Poincaré map, it is an attractor of the same kind
as the Smale-Williams solenoid, but embedded in a 4D
rather than 3D state space. This system, for sure, may be
designed, e.g., as an electronic device [13].

The system is constructed on the basis of two van der Pol
oscillators with characteristic frequencies!0 and 2!0. The
control parameters responsible for the Andronov-Hopf
bifurcations in the subsystems are forced to swing slowly,
periodically in time. On a half-period, the first oscillator is
excited and the second one remains below the generation
threshold. On another half-period the situation is the oppo-
site. Next, we assume that the first oscillator acts on the
partner via a quadratic term in the equation. The produced
second harmonic component serves as a primer for the
second oscillator, as it comes off the under-threshold state.
In turn, the second oscillator acts on the first one via a term
represented by a product of the dynamical variable and an
auxiliary signal of frequency !0. Thus, a component with
the difference frequency appears, which fits the resonance
range for the first oscillator and serves as a primer as it
starts to generate.

Summarizing this description, we write down the fol-
lowing equations:

�x� �A cos2�t=T � x2� _x�!2
0x � "y cos!0t;

�y� ��A cos2�t=T � y2� _y� 4!2
0y � "x2;

(1)

where x and y are dynamical variables of the first and the
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second oscillator, respectively, A is a constant designating
amplitude of the slow swing of the parameters, and " is a
coupling parameter.

We assume that the period of swing T contains an
integer number of periods of the auxiliary signal: T �
2�N=!0. Thus, our set of nonautonomous equations has
periodic coefficients, and it is appropriate to treat the
dynamics in terms of stroboscopic Poincaré section.

Let us suppose that we have an instantaneous state given
by a vector Vn � fx; _x=!0; y; _y=�2!0�g at tn � nT. Then,
after one time interval T we get a new state

V n�1 � F�Vn�: (2)

Here F is some vector function, which acts in a 4D space of
vectors V. This procedure defines a Poincaré map for our
system and delivers an alternative description of the dy-
namics in terms of discrete-time steps T [instead of the
continuous time description with Eqs. (1)]. Actual con-
struction of the map may be performed by means of
numerical solution of Eqs. (1).

To consider operation of the system on a qualitative
level, let us assume that on a stage of generation the first
oscillator has some phase ’: x / cos�!0t� ’�. The
squared value x2 contains the second harmonic:
cos�2!0t� 2’�, and its phase is 2’. As the half-period
comes to an end, and the second oscillator becomes ex-
cited, the induced oscillations of the variable y get the same
phase 2’. Mixture of these oscillations with the auxiliary
signal transfers the doubled phase into the original fre-
quency range. Hence, on the next stage of excitation the
first oscillator accepts this phase 2’. Obviously, on sub-
sequent stages of swing the phases of the first oscillator
follow approximately the mapping

’n�1 � 2’n�mod2��: (3)

Figure 1 shows typical time dependence for x and y
obtained from numerical solution of Eqs. (1) by the
Runge-Kutta method for parameter values !0 � 2�, T �
N � 10, A � 3, and " � 0:5 and a plot of empirical map
for phase ’n�1 versus ’n. The phases are determined for
the first oscillator at time instants tn � nT:
FIG. 1. A typical pattern of time dependence for variables x and
T � N � 10, A � 3, and " � 0:5 (left panel) and a diagram of empi
excitation at tn � nT (right panel).
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’ �
�

arctan��!�1
0 _x=x�; x > 0;

arctan��!�1
0 _x=x� � �; x < 0:

(4)

The mapping for the phase looks, as expected, topologi-
cally equivalent to the relation (3). (Some distortions arise
due to imperfection of the above qualitative considerations
and of the definition of phase; the correspondence becomes
better at larger N.) The chaotic nature of the dynamics
reveals itself in a random walk of humps on subsequent
periods of swing in respect to the envelope of the generated
signal.

In terms of the stroboscopic Poincaré map (2), attractors
of the system correspond exactly to the construction of
Smale and Williams. In the 4D state space, the direction
associated with the phase’ is expanding and gives rise to a
positive Lyapunov exponent of the map �1 � log2. Three
rest directions are contracting and correspond to a 3D
stable manifold of the attractor. Three respective
Lyapunov exponents are negative. Interpreting the strobo-
scopic Poincaré mapping, we may imagine a solid 4D
toroid (direct product of a 3D ball and a 1D circle) and
associate one iteration of the map with longitudinal stretch,
contraction in the transversal directions, and insertion of
the doubly folded ‘‘tube’’ into the original toroid.

In computations, the Lyapunov exponents were eval-
uated with a help of Benettin’s algorithm [14,15] from
simultaneous solution of Eqs. (1) together with a collection
of four exemplars of the linearized equations

�~x� 2x _x ~x��A cos2�t=T � x2� _~x�!2
0~x � "~y cos!0t;

�~y� 2y _y ~y���A cos2�t=T � y2� _~y� 4!2
0~y � 2"x~x (5)

for an integer number of periods T. In the course of the
solution, at each step of the integration schema, the Gram-
Schmidt orthogonalization and normalization were per-
formed for four vectors f~x�t�; _~x�t�=!0; ~y�t�; _~y�t�=2!0g, and
the mean rates of growth or decrease of the accumulated
sums of logarithms of the norms (after the orthogonaliza-
tion but before the normalization) were estimated.
Obviously, four Lyapunov exponents for the differential
equations �k and for the stroboscopic map �k are linked as
�k � T�1�k. In particular, for the attractor at the above-
mentioned parameters �1 � 0:068 � T�1 log2, �2 �
�0:35, �3 � �0:59, and �4 � �0:81. (Notice the absence
y obtained from numerical solution of Eqs. (1) for !0 � 2�,
rical mapping for phase of the first oscillator defined on stages of
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of a zero Lyapunov exponent: this is natural for maps and
nonautonomous flow systems.)

If the attractor is indeed hyperbolic, the chaotic dynam-
ics must be robust and retain its character under (at least
small) variations of the equations. As checked, this is in-
deed the case. In particular, as seen from Fig. 2, the largest
Lyapunov exponent is almost independent on parameter A,
and other exponents manifest rather regular parameter
dependences.

Dynamical behavior of the same kind is observed at
other integer period ratios, including essentially smaller
ones, e.g., N � 4. Figure 3 shows a portrait of the strange
attractor in the Poincaré section projected onto the plane
�x; _x� at !0 � 2�, T � N � 4, A � 8, and " � 0:5. It
looks precisely as the Smale-Williams attractor should
look. Observe the fractal transversal structure of ‘‘strips’’
constituting the attractor. In this case, the Lyapunov ex-
ponents are �1 � 0:17, �2 � �0:66, �3 � �1:03, and
�4 � �1:53. An estimate for fractal dimension from the
Kaplan-Yorke formula [16] yieldsD � 1:26, and that from
Grassberger-Procaccia algorithm [16,17] is D � 1:26.

It is interesting to perform a direct numerical test for
hyperbolicity of the attractor. The idea for such test was
suggested in Refs. [18,19] and applied for verification of
hyperbolicity of trajectories of dynamical systems, which
have one stable and one unstable direction. The procedure
consists of computations of vectors of small perturbations
along the trajectory, in forward and in inverse time, mea-
suring angles between the forward-time and backward-
time vectors at points on the trajectory. If zero values of
the angle do not occur, one concludes that the dynamics is
hyperbolic. If the angle distribution shows a nonvanishing
probability of angles close to zero, it implies nonhyperbo-
FIG. 2. Computed Lyapunov exponents of the stroboscopic
map versus parameter A at !0 � 2�, N � T � 10, and " �
0:5. Observe that the largest exponent remains almost constant in
the whole interval of hyperbolicity being in good agreement with
the estimate �1 � log2. The left edge of the diagram corre-
sponds to violation of the hyperbolicity.
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licity because of the presence of the homoclinic tangencies
of stable and unstable manifolds. In dissipative cases these
tangencies are responsible for the occurrence of
quasiattractors.

In our case the method needs a modification. First, we
intend to deal with description in terms of stroboscopic
map (2) to link the results directly with the Smale-Williams
construction. Second, in our case only unstable subspace is
one dimensional, and the stable subspace is three dimen-
sional. An adopted algorithm consists of the following.
First, we generate a sufficiently long representative orbit
fx�t�; _x�t�=!0; y�t�; _y�t�=2!0g on the attractor from the nu-
merical solution of Eqs. (1). Then, we solve numerically
the Eqs. (5) forward in time. In the course of the
solution, normalization of the vector a�t� �
f~x�t�; _~x�t�=!0; ~y�t�; _~y�t�=2!0g is performed at each step of
integration to exclude the divergence. Next, we solve a
collection of three exemplars of Eqs. (5) in backward time
along the same trajectory to get three vectors
fb�t�; c�t�;d�t�g. To avoid dominance of one vector and
divergence, we use the Gram-Schmidt orthogonalization
and normalization of the vectors in a course of the
integration.

At each point of the stroboscopic section tn � nT the
vector an � a�nT� determines an unstable direction, and
all possible linear combinations of fbn; cn;dng �
fb�nT�; c�nT�;d�nT�g define a 3D stable subspace of per-
turbation vectors for the Poincaré map.

To estimate an angle � between the stable and unstable
subspaces we first construct a vector vn�t� orthogonal to the
3D stable subspace, with components determined from a
FIG. 3. A portrait of the strange attractor in the stroboscopic
Poincaré section in projection onto the plane �x; _x� at !0 � 2�,
T � N � 4, A � 8, and " � 0:5.
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FIG. 4. Histograms for distributions of angles �n between the stable and unstable subspaces obtained from computational procedures
described in the text at !0 � 2� and " � 0:5. Panels (a) and (b) correspond to hyperbolic attractors, respectively, at N � 10, A � 3
and N � 4, A � 8, and panel (c) to a nonhyperbolic attractor at N � 10, A � 2:35.
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set of linear equations vn�t� � bn�t� � 0, vn�t� � cn�t� � 0,
vn�t� � dn�t� � 0. Then, we compute an angle �n 2
�0; �=2	 between the vectors vn�t� and an�t�: cos�n �
jvn�t� � an�t�j=jvn�t�jjan�t�j and set �n � �=2� �n.
Figure 4 shows histograms for the angles �n obtained
from computations. Diagrams (a) and (b) correspond to
the above-mentioned parameter values and demonstrate
clearly separation of the distributions from zero �’s: the
test confirms the hyperbolicity. For comparison, in
panel (c) I present a histogram for a nonhyperbolic attrac-
tor (that corresponds to the left edge of the plot in Fig. 3,
where the exponent �1 becomes notably distinct from
log2).

In conclusion, it is worth mentioning again that the
present example of a system with hyperbolic strange at-
tractors due to its simplicity may be realized as a physical
device, e.g., on a basis of two interacting electronic oscil-
lators. Departing from this system, one can easily construct
many other examples of systems with hyperbolic attrac-
tors, exploiting the property of structural stability: any
small variation of the terms in the equations will not
destroy the hyperbolicity. It opens an opportunity for ex-
perimental studies of hyperbolic chaos and its features
predicted by the mathematical hyperbolic theory (robust-
ness, continuity of the invariant measure, insensitivity of
statistical characteristics of the motions in respect to noise,
etc.). In addition, it makes conclusive a comparative ex-
amination of dynamics of hyperbolic and nonhyperbolic
systems of different physical nature.
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