PRL 95, 143906 (2005)

PHYSICAL REVIEW LETTERS

week ending
30 SEPTEMBER 2005

Observation of a Discrete Family of Dissipative Solitons in a Nonlinear Optical System

M. Pesch, E. GroBe Westhoff, T. Ackemann,™ and W. Lange

Institut fiir Angewandte Physik, Westfilische Wilhelms—Universitit Miinster, Corrensstrasse 2/4,
D-48149 Miinster, Federal Republic of Germany
(Received 27 March 2005; published 30 September 2005)

We report on the observation of a discrete family of spatial dissipative solitons in a simple optical
pattern forming system, which is based on a modified single-mirror feedback arrangement. After a
pitchfork bifurcation the system possesses two (nearly) equivalent coexisting states of different polar-
izations. The spatial solitons correspond to excursions from one of the two states serving as a background
state towards the other one. The members of the soliton family differ in the number of high-amplitude
radial oscillations. The observations are in good agreement with numerical simulations and general

expectations for dissipative solitons.
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Solitonlike localized states in dissipative systems driven
far from thermal equilibrium found considerable interest in
a vast variety of systems, e.g., hydrodynamics [1], granular
media [2], gas discharges [3], and nonlinear optics [4—11].
Often these structures are referred to as ‘“‘dissipative sol-
itons” or “‘autosolitons.” One of the intriguing features of
these structures is that they are attractors of the dynamics,
i.e., width and amplitude are fixed by the parameters and
independent of the initial conditions. This is in strong
contrast to the conservative case where a soliton is part
of a one-parameter family of varying width and amplitude
[12]. However, several theoretical studies on different
model systems show that the spatial dissipative soliton is
not necessarily unique, but that a sequence of higher-order
solitons might exist (and be stable) that differ in their
internal structure (e.g., the number of radial oscillations)
[13-18]. To the best of our knowledge, there are no corre-
sponding experimental observations.

We report on the observation of a discrete family of
solitons in a nonlinear optical system displaying a
symmetry-breaking bifurcation to two equivalent (or
nearly equivalent) states. This frequently encountered situ-
ation had been shown before to support the existence of
solitons in nonlinear optical systems, e.g., in theoretical
models of optical parametric oscillators [18—20], cavities
filled with a vectorial generalization of a Kerr medium
[21], intracavity second harmonic generation [17], and
intracavity four-wave mixing [22]. In the latter case the
(fundamental) soliton was also observed experimentally
[22].

The system under study here is an implementation of the
well-known single-mirror feedback arrangement [23] (see
Fig. 1). The driving light field is a linearly polarized
collimated laser beam (wy, = 1.89 mm), which is spatially
filtered in order to get a good cylindrical symmetry. This
“holding beam” is injected into a heated cell containing
sodium vapor in a nitrogen buffer gas atmosphere as the
nonlinear medium. The laser is operated at a frequency
some linewidths above the sodium D, line.
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The feedback loop consists of the feedback mirror (R =
0.99) at a distance d behind the medium and a
A/8-retardation plate, which represents a modification
with respect to the standard scheme [24]. Because of its
presence, the reentrant field will be elliptically polarized
unless the polarization vector of the impinging field is
exactly parallel to one of the principal axes of the A/8
plate. The portion of light that is transmitted by the feed-
back mirror is used for detection. The exit plane of the
sodium cell is imaged onto a CCD camera. A second A/8
plate whose optical axes are oriented perpendicular to the
ones of the first reestablishes the polarization state of the
light field in front of the first A/8 plate before detection. A
linear polarizer (“‘analyzer’) is used for analyzing the
polarization state of the light field. In addition to the
wide holding beam, there is a focused beam that can be
switched on and off. Its polarization and spot size in the
cell can be adjusted. Its frequency is slightly shifted with
respect to the one of the holding beam to avoid interference
effects. We call this beam ‘“‘addressing beam.”

Optical pumping with circularly polarized light induces
a nonzero ‘‘orientation’ of the vapor whose sign depends
on the helicity of the light. Under the conditions of the
experiment, the sodium D, line can be modeled as a J =
1/2 — J' = 1/2 transition with the population of the ex-
cited state being negligible (see [25] and references
therein). Under this assumption, the orientation is simply
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FIG. 1. Schematic experimental setup. A/8: eighth-wave plate;

M: mirror; PA: polarization analyzer; CCD: charge-coupled
device camera.
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given by the normalized population difference between the
two Zeeman sublevels of the ground state (ranging from
—1 to +1). For a linearly polarized input no net pumping
should occur if the slow axis of the A/8 plate is aligned
with the axis of the input polarization. However, it is
known that this system shows spontaneous symmetry
breaking between two spatially homogeneous elliptically
polarized states of opposite helicity [24,26]. One state is
connected with a positive orientation of the medium and a
positive rotation of the main axis of polarization, and the
other one has a negative orientation and polarization rota-
tion. This symmetry breaking can be interpreted as a
pitchfork bifurcation. If the slow axis of the A/8 plate is
slightly rotated by an angle ® with respect to the input
polarization, a perturbed pitchfork bifurcation is observed.
At much higher pump levels both of these homogeneous
branches become unstable against a modulational instabil-
ity, and pattern formation and the existence of a polariza-
tion domain wall were demonstrated [24].

In this parameter region, the ignition of a solitary struc-
ture was found to be possible (see Fig. 2). The system is
prepared in the state with negative polarization rotation.
The analyzer is adjusted such that this ““background beam™
is suppressed [Fig. 2(a)]. Then the o -polarized address-
ing beam is switched on and induces locally a transition to
a state with positive polarization rotation. This results in a
high transmission through the analyzer [Fig. 2(b)]. If the
addressing beam is switched off, a stable solitary structure
survives that consists of a bright ring [Fig. 2(c)]. Switching
on—at the position of the solitary structure—the address-
ing beam with o _ polarization results in an extinction of
the solitary structure [Fig. 2(d)]. After the erasure proce-
dure, the system recovers its initial state [Fig. 2(e)]. A
similar structure can be ignited by means of a
o _-polarized beam, if the system is first brought into a
state with positive polarization rotation.

If the diameter of the addressing beam is enlarged, other
types of stable solitary structures can be ignited for the
same or similar parameters (see below). The solitons differ
in size and in the number of radial oscillations (see Fig. 3).

a).b).C)-d).e).

FIG. 2. Switching sequence of a solitary structure. Polarization
analyzer aligned for suppression of the background beam in the
detection branch: (a) background beam; (b) ignition of a soliton
with circularly polarized addressing beam; (c) stable soliton with
addressing beam switched off; (d) erasure of soliton with ad-
dressing beam of opposite circular polarization; (e) background
beam. Parameters: mirror distance d = 120 mm; buffer gas
pressure py, = 300 mbar; cell temperature T = 321.8 °C; laser
detuning A = 16.2 GHz; laser power P, = 219 mW; rotation
of the slow axis of the eighth-wave plate with respect to input
polarization ® = 4°3(’.

We denote their order by numbering them from 1-4.
Depending on the size of the addressing beam, the circular
domain, which is initially ignited, will shrink or expand
until one of the stable solitary structures is reached. The
spatial frequency of the radial oscillations corresponds
quite accurately to the length scale of the modulational
instability. Soliton 4 is very sensitive to the experimental
parameters. We mention that it is slightly off-center,
though it was ignited at beam center. Not all orders of
solitons depicted in Fig. 3 are observed for the same set of
parameters, though the regions of existence of solitons of
subsequent orders typically overlap.

The existence of a discrete family of solitons can be
reproduced in numerical simulations of the microscopic
model described in Ref. [25]; the inclusion of the action of
the A/8 plate is readily accomplished (see Ref. [24]). For
parameter values similar to those used in the experiment,
the four observed types of solitons differing by the number
of radial oscillations are found [see Figs. 4(b)—4(e)]. The
results match nicely the experimental observations (cf.
Fig. 3). Just as in the experiment large structures that are
ignited in the beam center drift to an off-center position.
The drift is attributed to the amplitude and phase gradients
originating from the inhomogeneous pumping by the
Gaussian beam [27]; see also [6,13,28] for drift phenomena
due to gradients.

In the numerical simulations, soliton 4 was found to be
only ‘“‘metastable’” for a beam radius of wy = 1.89 mm;
i.e., it drifts very slowly to the boundary and then either
decays into soliton 3 or expands and switches the whole
beam to the slightly patterned state with positive polariza-
tion rotation. For a slightly larger beam radius [wy =
2.2 mm, Figs. 4(e) and 4(k)] it is stable. This provides
further support for the assumption that high-order solitons
are disfavored in a Gaussian beam. This is probably due to
the rather large size of the structures (diameters range from
0.41 mm for soliton 1 to 1.58 mm for soliton 4) in com-
parison to the beam radius (wy, = 1.9 mm).

In contrast to the experiment, the numerical simulations
also give the orientation of the sodium vapor. It is shown in
Figs. 4(g)—4(l). It can be seen that the number of radial
oscillations of the solitons is reduced by one with respect to
the intensities in Figs. 4(b)—4(e); i.e., soliton 1 is single
humped and can be identified as the fundamental soliton.

The solitons can also be found in simulations with plane
wave input. The orientation distributions are shown in

a) b) c) d)

FIG. 3. Experimentally observed solitons. Parameters as in
Fig. 2 with the exception of the replacements T = 327.3 °C,
A = 14.6 GHz, P, = 165 mW, ® = 7°00' in (b) to (d).
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FIG. 4. Numerically First column:

structures.
Transmitted intensity in the field component orthogonal to the
polarization of the background beam. Second column:

obtained

Orientation distributions corresponding to first column.
Orientation set to zero at a radius of 3 mm to simulate depolar-
ization of the vapor at the cell walls in simulations with Gaussian
beam input. Third column: Orientation distributions in simula-
tions with plane wave input. Fourth column: Horizontal cuts
through orientation distribution; ordinate scale extends from
—0.3 to 0.3. First row: Slightly patterned state with negative
orientation. Second to fifth rows: Solitons of different orders.
Sixth row: Slightly patterned state with positive orientation.
Parameters: d = 120 mm, ground state relaxation rate y =
200 s~!, relaxation rate of optical coherences I, =
994 x10°s™!, A =119 GHz, diffusion constant D =
255 mm? s~ !, particle density N = 4.65 X 10" m~3, length of
heated zone L = 15 mm, mirror reflectivity R = 99.5%. (a)—
(1) pump rate in beam center Py, = 180 X 10° s~!, beam radius
wo = 1.89 mm except (e),(k) wo = 2.2 mm, (m)-—
(X) Py =130X%10%s7! except (n),(t) Py = 150X 10% s7';
(@),(2),©),0),(0),() P =15°30";  (b),(h) P =19°30";
(d,(3))k) P =9°30"; (m),(5),(0),(w),(1),(x) P = 13°00";
(n),(t) ® = 21°00; (p),(v) ® = 8°00'; (q),(w) ® = 5°00".

Figs. 4(m)—4(r), and horizontal cuts through the center are
displayed in Figs. 4(s)—4(x). The first and sixth rows of

Fig. 4 show the manifestations of the two coexisting
branches emerging from the pitchfork bifurcation, which
are represented by either a positive [Figs. 4(r) and 4(x)] or a
negative [Figs. 4(m) and 4(s)] orientation of the medium.
On both branches a modulational instability is found in the
parameter region where the solitons exist. This results in
small-amplitude patterns with hexagonal symmetry [see
Figs. 4(m) and 4(r)]. Small-amplitude hexagonal patterns
are also found in the experiment (cf. also [24]).

Obviously, the amplitude as well as the width of a
constituent of the hexagonal pattern [Fig. 4(s)] and of the
fundamental soliton [Fig. 4(t)] are considerably different;
i.e., the soliton cannot be interpreted as a single constituent
of these hexagonal patterns. Instead, it appears that they
represent a localized excursion from the ‘‘background
state’ into the vicinity of the amplitude level of the other
state and back; i.e., the soliton represents a homoclinic
connection of the background state with itself (see, e.g.,
[29]). In the one-dimensional case this situation is charac-
terized by the existence of two switching fronts that are
locked, while in the two-dimensional case a circular front
is interacting with itself. In the interpretation of our ex-
periment we assume that the locking process is heavily
supported by the presence of a modulational instability
which exists on both branches, i.e., in the states of positive
or negative rotation of the polarization. Locking should
then be possible at different spatial separations of the fronts
due to the periodicity of the modulated states. The exis-
tence of a discrete family of solitons appears to be the
natural consequence. The assumption of the crucial role of
the modulational instability in our experiment is basically
supported by the fact that we always observe the wave
number of the modulational instability in the Fourier spec-
trum, if the threshold of soliton formation is surpassed. Far
above threshold the solitons even lose their radial symme-
try. Some indication of this process can be seen in the
experimental [Figs. 3(c) and 3(d)] and numerical results
[Fig. 4(q)] presented here.

Our observation of a discrete family of dissipative sol-
itons fits nicely with results obtained in models of non-
linear cavities and in unspecific model equations, where
oscillatory tails of the fronts—often, but not always, con-
nected to a modulational instability—were shown to give
rise to the existence of a set of solitons differing in size and/
or the number of radial oscillations [13,15,16,18]. It should
be noted that this general mechanism does not seem to
apply to the bistability between two types of solitons
(circular and triangular) reported recently [11], which
was attributed to the coexistence of a stable homogeneous
state and two different pattern forming branches.

A clue to the mechanism stabilizing the solitons is
obtained from the following experimental observations.
The minimum threshold power P, for the existence of
solitons occurs if the slow axis of the A/8 plate and the
input polarization include some finite angle @, that dis-
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favors the polarization state of the background and favors
the polarization state of the soliton. (About the same
threshold is obtained for the angle —®,, of course, with
the roles of the two polarization states being interchanged.)
When the input power is increased above P,, then there is a
finite range of angles @, where solitons exist. Above a
second threshold P! (P. about 1.3P, for the parameters
considered here) the range of ®, where solitons exist,
includes @ = 0. In that case the two polarization states
are completely equivalent. It is a well-known phenomenon
in nonlinear model systems that a circular droplet of one of
two equivalent states within the background of the other
one shrinks and finally disappears (“‘curvature-driven dy-
namics” —see, e.g., [30,31]). The edge of the droplet,
however, may be pinned by spatial modulations, and pin-
ning is more probable, when strong modulations are
present, of course. Obviously robust pinning occurs in
our system when the input power P exceeds P'.

If the two homogeneous states are not completely
equivalent, i.e., in the case ® # 0, the curvature-driven
shrinkage of a droplet is counteracted, if the droplet is in
the preferred state. For large values of |®| the shrinkage
can even be overcompensated and then the droplet ex-
pands. For a given ®, there is a critical radius of the droplet
where the two effects are in balance. However, this situ-
ation is known to be unstable in general, at least if the
droplet state and the background state are homogeneous
[30]. These expectations are confirmed by numerical simu-
lations of our system below the critical value P.. Because
of the existence of the modulational instability, however,
spatial modulations become much more pronounced for
increased input power. In the case ® = @, the modula-
tions occurring for P = P, are considered to warrant sta-
bilization, while in the case ® = 0, i.e., without other
effects counteracting the curvature-driven dynamics, the
modulations corresponding to P/, are necessary.

The symmetry-breaking pitchfork bifurcation that
underlies the existence of spatial solitons in the system
under study is a very common phenomenon in nonlinear
physics. It can be expected that the existence of a discrete
family of spatial dissipative solitons reported here is also
widespread. In our case, however, the occurrence of the
solitons is closely linked to the presence of a modulational
instability. Though a modulational instability is not a pre-
requisite for the existence of higher-order solitons in gen-
eral, it seems to play its role here in their stabilization and
may make them more robust and thus facilitate their
observation.

We are grateful to P. Coullet and D. Gomila for fruitful
discussions and to J. U. Schurek for help in analyzing the
experimental data.
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