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Ultrasmall Mode Volumes in Dielectric Optical Microcavities
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We theoretically demonstrate a mechanism for reduction of mode volume in high index contrast optical
microcavities to below a cubic half wavelength. We show that by using dielectric discontinuities with
subwavelength dimensions as a means of local field enhancement, the effective mode volume (Veff)
becomes wavelength independent. Cavities with Veff on the order of 10�2��=2n��3 can be achieved using
such discontinuities, with a corresponding increase in the Purcell factor of nearly 2 orders of magnitude
relative to previously demonstrated high index photonic crystal cavities.
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Most photonic dielectric cavities have been traditionally
limited to sizes that are on the order of the wavelength of
light. Cavities based on photonic crystals have been dem-
onstrated with mode volumes as small as a few half wave-
lengths in each dimension [1–3]. This lower bound on the
effective mode volume (Veff) arises from a mechanism of
confinement based on interference effects and is therefore
wavelength dependent. Here, using dielectric discontinu-
ities, we show a wavelength-independent decrease in mode
volume by several orders of magnitude over previous high
index dielectric microcavities.

Reducing Veff in cavities enables one to control the
degree of light-matter interaction for processes such as
spontaneous emission, nonlinear optical responses, and
strong coupling. The control of these interactions is crucial
for applications in light emitting devices, as well as for
optical switches and modulators [3–7]. Here we focus on
the interaction of light with an emitter and analyze the
enhancement of the spontaneous emission rate due to the
decrease in Veff . The Purcell factor (a measure of the
spontaneous emission rate enhancement) for an emitter in
a resonant cavity is derived directly from Fermi’s golden
rule [5,6]:
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where �c�!� is the density of photon modes in the cavity,
�c�!� is the mode density for the dipole transition (mate-
rial emission spectrum), ~pa is the atomic dipole moment,
and ~E� ~re� is the electric field at the location of the emitter
normalized by a factor �2 � @!
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point energy. From Eq. (1) we see that for a given emitter
with �e�!�, there are two ways to increase the spontaneous
emission rate. First one can increase the cavity mode
density �c�!�. This is commonly measured as an increase
in the cavity quality factor (Q � !0=�!) where !0 is the
resonant frequency and �! is resonant linewidth. Second
one can increase the value of the normalized electric field
at the emitter (� ~E� ~re�). As we will show below, this
amounts to decreasing the effective volume of the electro-
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magnetic energy in the resonant mode (Veff). Thus the
common figure of merit for resonant cavities is the ratio
Q=Veff [4,5,8]. This can be seen from the Purcell factor
(Fp) in Eq. (2). From Eq. (1) when the emitter is paced at
the peak of the electric field and the cavity resonant fre-
quency equals the peak emission frequency (!e), the ratio
of spontaneous emission rate in the cavity compared to
bulk can be written as [1,5,9]
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where n is the index of refraction at the peak field ( ~rmax).
We define the normalized unitless effective mode volume
as:

~V eff � Veff
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where ~rmax is the location of the maximum squared field. It
is important to note that Eq. (2) is valid under the condition
that the cavity’s resonance linewidth is greater than the
emission linewidth of the active element [1,5]. When the
resonance linewidth of the cavity is much smaller than that
of the emitter (as is the case at room temperature for
high-Q cavities in rare-earth-metal-doped materials),
�c�!� in Eq. (1) is replaced by ��!e�. In this regime the
‘‘material Q’’ (Qm � !e=�!e where �!e is the linewidth
of the emitter) replaces the cavity Q in Eq. (2) [1]. Thus
increasing the cavity Q has no effect on the spontaneous
emission rate. The only means of increasing the sponta-
neous emission rate in this regime is to decrease ~Veff .
Recently donor-type photonic crystal cavities have shown
reduced ~Veff by localizing light in a low index defect region
�n�~rmax� � 1:0� [10]. While there has been much advance-
ment in creating resonators with high Q factors [2,11,12],
1-1 © 2005 The American Physical Society
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little progress has been made in creating mechanisms for
decreasing ~Veff . In this work we demonstrate a method for
reducing ~Veff by systematically increasing the maximum
value of the normalized squared field ( max�jE� ~r�j2�R

�� ~r�jE� ~r�j2d3r
) in

Eq. (3).
We achieve an increase in the normalized maximum

field by using sub-wavelength-sized dielectric material
discontinuities [13]. For example, consider a one-
dimensional high index contrast slab [Fig. 1(a)].
Figure 1(d) shows the field distribution of the fundamental
mode in this structure for an electric field polarized normal
to the interface. One can introduce an infinitesimal low
index slot at the location of peak intensity oriented per-
pendicular to the electric field polarization. Figure 1(b)
shows an example of this slot introduced in a one-
dimensional slab. We recall from Maxwell’s equations
that the normal component of the electric displacement
(D) is continuous across the boundary of two dielectrics,
thus �LEL � �HEH where L and H denote low and high
refractive index regions, respectively. Figure 1(e) shows
the new eigenmode of the slab waveguide after the intro-
duction of a narrow slot. The unitless effective mode
volume in a waveguide with an infinitesimal slot is given
by:

~V 	eff �

R
�� ~r�jE� ~r�j2d3 ~r
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where E0 is the maximum value of the field in the high
index before introducing the slot. The infinitesimal slot has
a negligible effect on the integral in the numerator; there-
fore, the ratio of unitless mode volumes, or the Purcell
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FIG. 1 (color online). (a)–(c) The index profile for the slab wavegu
(ws). (d)–(f) The field distribution of the fundamental mode in the
polarized normal to the interface. E0 is the maximum value of the e
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factors [see Eq. (2)], before and after the introduction of a
slot is approximately given by
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The above decrease in effective mode volume is wave-
length independent and can represent more than an order of
magnitude reduction. For example, using dielectric mate-
rials such as air (� � 1) and amorphous silicon in the
infrared (� � 13:9) results in a reduction in ~Veff by a factor
of over 700. Because of the normalization to the bulk
spontaneous emission rate in the Purcell factor, the radia-
tive decay rate in the cavity is proportional to the Purcell
factor times the bulk index. This bulk index is different for
the cavity with and without the slot since the emitter is
embedded in different bulk materials (nH for the cavity
without the slot and with nL for the cavity with the slot).
Thus the increase in the spontaneous emission rate at the
peak field resulting from the introduction of the slot is
given as:
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Field enhancement in the low index region of slot wave-
guides has recently been demonstrated experimentally in
[14] showing over 30% of the power contained in the slot
region. In Figs. 1(e) and 1(f) we show the field distribu-
tions in a slab waveguide with two different slot widths
shown in Figs. 1(c) and 1(d). As the slot width increases the
mode no longer resembles the original mode with a dis-
continuity, but becomes more confined to either side of the
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ide with embedded low index slot regions of various slot widths
slab waveguide for various values of ws. The electric field is

lectric field for the slab with no slot and �n is the ratio nH=nL.
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FIG. 3 (color online). (a) jEj2 field spatial distribution from 3D
FDTD in the a cavity based a on buried waveguide with an
embedded low index slot at its resonant wavelength of
1431.3 nm. (b) jEj2 field spatial distribution from 3D FDTD in
a quasi-1D microcavity based on a buried waveguide without a
slot for the resonant wavelength of 1556.4 nm.

FIG. 2 (color online). The ratio of the effective mode volume
of a slot waveguide compared to a slab waveguide for �n � 1:5
(circles), �n � 2:5 (triangles), and �n � 3:5 (squares), where
�n is the ratio of high to low refractive indices. The slab
thickness is �=nH .
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high index material. We plot in Fig. 2
~V	eff
~Veff

as a function of

slot width for a cavity in which the field is confined in a
slab waveguide of width �=2nH for various index contrasts
��n �

��������������
�H=�L

p
�. From Eq. (5) we see this ratio is equiva-

lent to the ratio of Purcell factors in the nonslot and slot
cavities. As the width of the slot narrows the relative
decrease in Veff approaches the dashed lines which repre-
sent the theoretical limit of �n�5 given in Eq. (5).

In order to analyze the effect of the reduced mode
volume on the Purcell effect, we embed the waveguide
with a slot in a quasi-one-dimensional microcavity with
Q� 102. The microcavity shown in Fig. 3(b) is a
460 nm� 260 nm buried waveguide with refractive index
of 3.48 and a cladding index of 1.46 [3]. The 1D photonic
crystal on either side of the cavity consists of five 200 nm
diameter holes spaced 360 nm center to center with a
refractive index of 1.46. The cavity length at the center
of the structure is 880 nm between the hole centers. The
slot at the center of the cavity in Fig. 3(a) has a refractive
index of 1.0 which is similar to recently reported fabrica-
tion [14]. Figure 3(b) shows the squared magnitude of the
electric field at the resonant wavelength of 1556 nm in the
cross-sectional plane at the waveguide center (z �
130 nm). Figure 3(a) shows the same cavity after the
introduction of a 20 nm wide slot with a refractive index
of 1.0 in the cavity region. The magnitude of the electric
field is determined using 3D finite difference time domain
(FDTD) technique to calculate the resonant mode in each
of the cavities (note that a shift of the resonance occurs,
from 1556 nm to 1431 nm, when the slot is introduced due
to the resulting decrease in the effective index of the
cavity). Using Eq. (3) and the results of the 3D FDTD
we calculate a decrease in Veff from approximately
14390
3:34��=2n�3 in Fig. 3(b) to 0:042��=2n�3 in Fig. 3(a).
From Eq. (5) this corresponds to nearly an 80-fold increase
in the Purcell factor and an increase in spontaneous emis-
sion rate for atoms in the cavity center by more than a
factor of 20. Note from Eqs. (5) and (6) that the increase in
the Purcell factor is larger than the increase in the sponta-
neous emission rate by a factor of nH=nL. The increase is
smaller than the one predicted from Eqs. (5) and (6) due to
the finite width of the slot. A smaller slot in the same
materials could yield over 500-fold increase in the
Purcell factor. The Q factor [determined by measuring
the intensity decay rate of the cavity mode (1=�p) where
Q � !�p [15] ] is slightly lowered by the introduction of
the slot, decreasing from 305 to 175. Optimization of the
cavity to better confine the new mode could be used to raise
the new Q factor [16].

Note that the Purcell formalism described above in
Eqs. (1) and (2) is valid in the regime in which the field
does not vary significantly over the size of the emitter. To
verify the proposed structure is indeed in this regime, we
compare the field decay length in the slot (1=�s) to the size
of the emitter. Taking � to be 1:55 	m, for slots ranging
from 0.001 to 0.2 �=2nH, 1=�s is about 3 orders of magni-
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tude larger than the size of an atom or ion-based emitters.
Thus these structures are well within the regime described
by Eq. (1) [13]. Also note that throughout the Letter we
assume that the coupling of the cavity to the emitters is in
the weak coupling regime; i.e., the photon lifetime (�p) is
much smaller than the inverse of the emitter-cavity cou-
pling frequency. In the present work, for realistic sub-
micron cavities with Q� 103 (�p � 0:8 ps) we are well
within this regime.

The principle of reduction of effective mode volume,
well below the dimensions of the wavelength of light, can
be applied to nearly every existing microcavity resonator to
enhance not only light emission but also nonlinear effects.
Examples of emitters embedded in low index media that
could be used are gas-phase atoms and rare-earth-metal-
doped oxides. Such a reduction can enable the demon-
stration of effective mode volumes on the order of
10�2��=2n�3 or smaller and increase the Purcell factor
by orders of magnitude. This technique may enable new
experiments in cavity quantum electrodynamics, ultrasen-
sitive single atom detection, and low threshold lasers.
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