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Temporal Scaling at Feigenbaum Points and Nonextensive Thermodynamics
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We show that recent claims for the nonstationary behavior of the logistic map at the Feigenbaum point
based on nonextensive thermodynamics are either incorrect or can be easily deduced from well-known
properties of the Feigenbaum attractor. In particular, there is no generalized Pesin identity for this system,
the existing attempts at proofs being based on misconceptions about basic notions of ergodic theory. In
deriving several new scaling laws of the Feigenbaum attractor, thorough use is made of its detailed
structure, but there is no obvious connection to nonextensive thermodynamics.
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During the last decade a vast body of literature has ap-
peared on a new ‘‘nonextensive thermodynamics’’ (NET),
which uses a maximum entropy principle with the Shannon
entropy replaced by the Havrda-Charvat [1] (Tsallis) en-
tropy [2–5]. Several versions of NET were proposed by
Tsallis and others [3], in order to avoid inconsistencies. But
as shown most forcefully by Nauenberg [6], none of these
versions is consistent with thermodynamics, at least for
equilibrium systems.

For nonequilibrium systems the situation is not quite so
simple, as the standard maximum entropy principle is
usually not applicable. As shown by Jaynes [7], the formal-
ism of statistical physics can be obtained by Occam’s
razor: If all knowledge can be formulated in terms of
constraints, then the only rationally justifiable ansatz for
the probability distribution is the one which maximizes
Shannon entropy (which has to be replaced by Kullback-
Leibler information, if some knowledge existed prior to
these constraints). The main reason why standard thermo-
dynamics cannot be applied to most nonequilibrium sys-
tems is that prior knowledge cannot be cast into the form of
a few constraints. But there is no reason for abandoning an
information theoretic interpretation of entropy, and
Shannon (Kullback-Leibler) entropy is the only consistent
probabilistic measure of (relative) information.

The main reason why NET is still vigorously pursued is,
it seems, the claim that it is able to make striking predic-
tions that could not be made within a more conventional
framework. Typically, these are for nonequilibrium phe-
nomena with distributions showing power laws with heavy
tails. In deriving these distributions, not only is Shannon
entropy replaced arbitrarily by Tsallis entropy. Also the
constraints are modified in a way which has no clear
rational motivation—except that one arrives thereby at
expressions more easily handled.

A careful study of most examples where NET was
supposedly successful shows that the success is much
less clear than claimed. In a later publication, we will
substantiate this further by discussing several such ex-
amples. In the present Letter, we discuss in depth just
one single example, which has been treated in several
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papers [8–23], and which was claimed to show the success
of NET in a particularly clear way.

This example is the nonstationary behavior of the
Feigenbaum attractor [24]. More precisely, one can study:
(1) sensitive dependence on initial conditions (both for
finite and infinitesimal perturbations, both on the attractor
and in its basin of attraction); (2) scaling of different
dynamical (Shannon, Renyi, Tsallis) entropies of various
ensembles of trajectories with their time length T; (3) con-
vergence of a typical trajectory (with random initial con-
dition in its vicinity) to the attractor; (4) scaling of ‘‘static’’
(i.e., Boltzmann-Gibbs) entropies of an ensemble of points
with time.

Most of these problems have been discussed since the
early 1980’s [25–30]. Also, it had been realized from the
very beginning that some of these questions are subtle due
to large fluctuations (‘‘multifractality’’ of the Feigenbaum
attractor). In the first papers based on NET [8–10] this was
missed, leading to wrong claims that a single nonextensiv-
ity parameter could describe scaling at the onset of chaos.
Although this was corrected recently, we shall see that the
effect of fluctuations is still not fully appreciated in some
of these papers [20,23].

In the following we give theoretical arguments only for
the Feigenbaum map [24] g�x� defined by g�g�x�� �
���1g��x� and g�x� � 1� cx2 �O�x4� for x! 0, but
we use the logistic map a� x2 with a � 1:401 155 189 . . .
for numerical calculations. Problems of universality have
been discussed, e.g., in [24,26].

Let us first discuss the dependence on infinitesimal
changes in the initial conditions, i.e., the behavior of
�n�x0�� lnjdxn=dx0j, where xi�1�g�xi�. As pointed out
in [26], �n�x0� fluctuates very strongly with n and x0.
Different ways of averaging over x0 give, therefore, rise
to different scalings with n. If we take arithmetic averages
over �n (i.e., geometric averages over jdxn=dx0j), we get

Z
dx0w0�x0� lnjdxn=dx0j � � lnn (1)

with � � 0:599	 0:003 for all smooth initial distributions
w0�x�, at least when we also do an additional averaging
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over n to damp out remaining oscillations [31]. On the
other hand, as proven rigorously in [26], arithmetic aver-
ages over jdxn=dx0j give

Z
dx0w0�x0�jdxn=dx0j � nconst lnn: (2)

Without averaging over x0 one can of course obtain
completely different behavior. For x0 � 1, e.g., one finds
jdxn=dx0j ! const for n � 2k, k! 1, while

jdxn=dx0j � �k � �n� 1�log2� (3)

(exactly) for n � 2k � 1 [32]. Tsallis et al. prefer to
write Eq. (3) as jdxn=dx0j � �1� ��1� q�n�

1=�1�q� with
� � 1=�1� q� � log2�, and call the right-hand side a
q exponential.

Notice that Eq. (3) is not a scaling law, since it holds
only for special values of n. But one obtains a scaling law
by taking averages over n (see Fig. 1),

�� n�x0� 
 n�1
Xn
i�1

�i�x0� � � lnn for x0 � 1 (4)

with � � 0:713 393 80 . . . . Notice that the constants in
Eqs. (1), (3), and (4), are not directly related.

Defining ��n�x� for any x on the attractor as in Eq. (4)
gives the natural generalization of the Lyapunov exponent.
It fluctuates strongly with x [28,31] and for many applica-
tions like Pesin’s identity [33] one needs averages over x
with respect to the natural measure ��x�. In the present
case, one can easily see that the average

h ��ni 

Z
d��x� ��n�x� (5)

is identically zero for all n [35], which indicates that there
cannot exist a close analogy to Pesin’s identity. The iden-
tities suggested and verified in [8,20,36] are trivial as the
authors started with an initial distribution w0�x� narrowly
localized around x0 and followed the evolution only up to
values of n for whichwn�x� is still smooth and described by
the flow linearized around the trajectory starting at x0 [37].
In addition, they considered, instead of the Kolmogorov-
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FIG. 1. Scaling of the time averaged local sensitivity expo-
nents, for trajectories starting at x0 � 1.
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Sinai (KS) entropy, just the difference Sn � S0 between
two static ‘‘Boltzmann-Gibbs’’ entropies

Sn � �
Z
dxwn�x� lnwn�x�: (6)

In this case one has of course Sn � S0 � �n�x0�, but this
has no connection to any (generalized) Pesin identity.

Eqs. (3) and (4) apply to trajectories starting on the
attractor. In order to understand the origin of Eqs. (1)
and (2) one has to study how trajectories starting in its
vicinity approach the attractor. For this one has to use the
detailed triadic Cantor structure of the Feigenbaum attrac-
tor [24]. Associated to this structure is a set of open disjoint
intervals Ik;i, the closure of which covers the interval
��1=�; 1� which contains the attractor [26]. I�0; 1� is the
hole cut out from the middle of the Cantor set in the first
stage of construction; I�1; 1� and I�1; 2� are the second
generation holes, I�2; 1� to I�2; 4� are the holes cut out in
the third step, etc. Each Ik;i contains exactly one point on
the instable periodic orbit of period 2k. Let us define Ik �S
iIk;i; i.e., Ik is all that is cut out during the kth step. The

evolution of a typical trajectory can then be viewed as a
tumbling through the Ik’s, with k never decreasing with n.
The average increase of k is for large n exactly given by

hki � const� log2n: (7)

As shown in [26], Eq. (1) follows (up to the precise value
of �) from Eq. (7) and from the scaling behavior proven by
Feigenbaum.

In [20] the authors studied another average over �n�x�,
in between Eqs. (1) and (2),

�q�n� 

Z
dx0w0�x0�jdxn=dx0j

1�q: (8)

From straightforward simulations they concluded that
�q�n� becomes (asymptotically) linear in n, �q�n� � n,
for q � 0:36 and called this value qav

sen. But neither analytic
nor numerical estimates of �q�n� seem easy. A direct
numerical estimate as in [20] is prone to large errors, since
the integrand of Eq. (8) [with constant w0�x0� and for q �
qav

sen] is very sharply peaked near the unstable periodic
orbits of small periods. Choosing initial values x0 at ran-
dom one will miss these peaks, unless one has extremely
high statistics. But it is not clear anyhow why Eq. (8)
should be of interest. In contrast to what its name suggests,
qav

sen does not measure the average sensitivity to initial
conditions but just one particular average.

Another consequence of Eq. (7) is that the (geometri-
cally) average distance from the attractor of a point starting
randomly in ��1=�; 1� decreases as [26]

dn � n�1=D1 (9)

where D1 � 0:517 097 . . . is the information dimension of
the Feigenbaum attractor.

The same argument can also be immediately used to
derive the scaling of the Boltzmann-Gibbs entropy with n,
1-2
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after starting with a random ensemble [23]. Assume we
have Nn points distributed randomly with respect to wn�x�.
The distance between point x�j�n and its nearest neighbor is
called rj. The Kozachenko-Leonenko estimator [38] for
differential entropies gives then for large Nn

Sn � const� lnNn �
XNn
i�j

lnrj: (10)

To apply this for the present problem, we choose further-
more Nn � nN0 so that Nn scales as the number of inter-
vals Ik;i with k � const� log2n. We notice also that all Ik;i
with i � 1; . . . ; 2k have roughly the same statistical weight.
Then the distance to the nearest neighbor scales as the size
of the interval in which the point is located, rj 2 jIk;ij with
xj 2 Ik;i, and it follows that

Sn � const�
1�D1

D1
log2n: (11)

Data obtained by spraying N points uniformly onto �a�
a2; a�, letting them evolve according to the critical logistic
map, and estimating Sn by binning this interval into M
bins, are shown in Fig. 2. Here we used N > 2� 109,
which is largely sufficient for convergence (we used the
entropy estimator corrections given in [39]). Convergence
with the number of bins is much slower. We see very clear
changes as we increase M from � 107 to � 3� 108. This
explains also the small remaining discrepancy.

Although Sn had been discussed as an interesting quan-
tity in the NET literature [11,17,22,23], we are not aware
of a previous estimate. Instead, several authors [11,17,23]
have studied a different quantity Wn, which they supposed
to have the same scaling. Instead of taking a sum over all
nonempty bins with weights pi log�1=pi�, Wn is just the
number of nonempty bins. Scaling of this quantity is much
more subtle—both theoretically and numerically. We
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FIG. 2. Time dependence of the Boltzmann-Gibbs entropy Sn,
i.e., of the differential Shannon entropy of the x distribution,
starting with a uniform distribution over the interval �a� a2; a�.
The three curves correspond to different binnings. The lines
connecting the data points are just to guide the eye, and omit the
log-normal oscillations. The straight line indicates the theoreti-
cally predicted slope.

14060
should expect larger finite n, finite M, and finite N correc-
tions for Wn than for Sn, but when n, M, and N are
sufficiently large [40], we can apply basically the same
reasoning to Wn as we did for Sn: It scales like the total
length of all intervals Ik;i with k � log2n. Calculating the
latter is easy and gives

Wn � n�0:800 138 194...: (12)

The exponent measured in [11] was quite different (0:71	
0:01 instead of 0.80), but this is easily explained by the
expected large corrections to scaling, which have even led
to claims of nonuniversality in [23].

The KS entropy for a one-humped map with maxi-
mum at x � 0 is obtained from the sequences sn �
�sgn�x1�; . . . ; sgn�xn��, as

HKS � lim
n!1

n�1Hn (13)

with Hn � �
P
snp�sn� lnp�sn�. As shown in [27,30],

for the Feigenbaum attractor one has Hn � lnn�O�1�.
Thus the KS entropy is zero, but there is a logarithmic
increase of Hn. With the same methods one can prove
exactly that all Renyi entropies Hq � limn!1H

q
n with

Hq
n � �1� q��1 ln

P
sn�p�sn��

q are equal for this problem,
limn!1H

q
n=Hn � 1 for all q [41]. For Tsallis-type gener-

alized KS entropies, this gives Kq
n 
 �1� q��1�exp��1�

q�Hq
n� � 1� � n1�q, at variance with [14].

The q independence of the Renyi entropies is surprising
in view of the multifractality of the attractor. For a chaotic
attractor, the Hq

n are closely related, via generalizations of
Pesin’s identity, to qth moments of ��x� [42]. This shows
again that the onset of chaos is more subtle than expected
in the NET literature.

In the first papers [8–11], it was supposed but never
substantiated that the parameter q of NET can be obtained,
also for the Feigenbaum map, by some maximum entropy
principle. Although this was never withdrawn, q is now
fixed such that one obtains linear time dependencies, when
logarithms are replaced by q-deformed logarithms (see,
e.g., [20]). The reason for this is not clear, since there is
no need for time dependencies to be linear. But even worse,
with the proliferation of different (although closely related)
scaling laws, one obtains—for the single case of the
Feigenbaum map—a rich zoo of different q values
[4,20]. With the additional scaling laws found in the
present Letter, there would be even more q’s—unless
one accepts at last that NET fails at least at the onset of
chaos.

One reason for preferring ‘‘q exponentials’’ (i.e., gener-
alized Pareto distributions [43]) over power laws could be
that the former give correct deviations from pure power
laws at small arguments. But in all cases studied in the
present Letter [except Eq. (3)] the small-n limits are nei-
ther given by pure powers nor by q exponentials.

Finally, as a last remark: In [3,15,20] the Feigenbaum
map was chosen as the prototype of a supposedly weakly
mixing system. But it is not mixing at all.
1-3



PRL 95, 140601 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
30 SEPTEMBER 2005
I am indebted to Maya Paczuski, Walter Nadler, and
Karol Zyczkowski for numerous discussions.
[1] J. Havrda and F. Charvat, Kybernetica 3, 30 (1967).
[2] C. Tsallis, J. Stat. Phys. 52, 479 (1988).
[3] C. Tsallis, Chaos Solitons Fractals 13, 371 (2002).
[4] C. Tsallis, cond-mat/0403012.
[5] For an up to date bibliography containing more than

1500 references, see http://tsallis.cat.cbpf.br/biblio.htm.
[6] M. Nauenberg, Phys. Rev. E 67, 036114 (2003); 69,

038102 (2004).
[7] E. T. Jaynes and G. L. Bretthorst, Probability Theory:

The Logic of Science (Cambridge University Press,
Cambridge, England, 2003).

[8] C. Tsallis, A. R. Plastino, and W.-M. Zheng, Chaos
Solitons Fractals 8, 885 (1997).

[9] U. M. S. Costa, M. L. Lyra, A. R. Plastino, and C. Tsallis,
Phys. Rev. E 56, 245 (1997).

[10] M. L. Lyra and C. Tsallis, Phys. Rev. Lett. 80, 53 (1998).
[11] F. A. B. F. de Moura, U. Tirnakli, and M. L. Lyra, Phys.

Rev. E 62, 6361 (2000).
[12] J. Yang and P. Grigolini, Phys. Lett. A 263, 323 (1999).
[13] M. Buiatti, P. Grigolini, and L. Palatella, Physica A

(Amsterdam) 268, 214 (1999).
[14] S. Montangero, L. Franzoni, and P. Grigolini, Phys. Lett.

A 285, 81 (2001).
[15] V. Latora, M. Baranger, A. Rapisarda, and C. Tsallis,

Phys. Lett. A 273, 97 (2000).
[16] U. Tirnakli, G. F. J. Añaños, and C. Tsallis, Phys. Lett. A

289, 51 (2001).
[17] E. P. Borges, C. Tsallis, G. F. J. Añaños, and P. M. C.

de Oliveira, Phys. Rev. Lett. 89, 254103 (2002).
[18] C. Tsallis, A. Rapisarda, V. Latora, and F. Baldovin,

Nonextensivity: From Low-Dimensional Maps to
Hamiltonian Systems, Springer Lecture Notes in Physics
Vol. 602 (Springer, Berlin, 2002), p. 140.

[19] F. Baldovin and A. Robledo, Phys. Rev. E 66, 045104(R)
(2002); Europhys. Lett. 60, 518 (2002).

[20] G. F. J. Añaños and C. Tsallis, Phys. Rev. Lett. 93, 020601
(2004).

[21] R. Tonelli, G. Mezzorani, F. Meloni, M. Lissia, and
M. Coraddu, cond-mat/0403360.

[22] M. Coraddu, F. Meloni, G. Mezzorani, and R. Tonelli,
Physica A (Amsterdam) 340, 234 (2004).

[23] R. Tonelli, report, 2005.
[24] M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978); 21, 669

(1979).
[25] B. A. Huberman and J. Rudnick, Phys. Rev. Lett. 45, 154

(1980).
[26] P. Grassberger and M. Scheunert, J. Stat. Phys. 26, 697

(1981).
[27] P. Grassberger, Int. J. Theor. Phys. 25, 907 (1986).
[28] G. Anania and A. Politi, Europhys. Lett. 7, 119 (1988).
[29] H. Hata et al., Prog. Theor. Phys. 82, 897 (1989).
[30] J. Freund et al., Phys. Rev. E 54, 5561 (1996).
[31] These oscillations and the ones seen in Fig. 1 are due to

the Cantor structure of the Feigenbaum attractor and will
not be discussed further.
14060
[32] Equation (3) follows immediately from the Feigenbaum-
Cvitanovic relation �g�g�x�� � �g��x� and from the
well-known facts [24] that g�1� � �1=�, g0�1� � ��,
and g0��1=�� � 1. The equation for n � 2k uses in
addition the fact that x�2k�1� � g�2

k�1��1� is close to
zero, where g�x� has its quadratic maximum. See also
[19]. For Feigenbaum type maps gz�x� with maxima of
order z, the same easy derivation gives jdxn=dx0j �
��z�1�k. For no obvious reasons, this relation was claimed
to show the importance of NET in [10].

[33] For an invariant measure which is absolutely continuous in
all expanding dimensions, Pesin’s identity (see, e.g., [34])
relates the Kolmogorov-Sinai entropy HKS to the
Lyapunov spectrum via HKS �

P
�i>0�i. For a measure

with partial dimensions Di < 1 in the expanding dimen-
sions; this generalizes to HKS �

P
�i>0Di�i. The latter

should be further generalized if one looks for a Pesin-type
identity for the Feigenbaum map.

[34] E. Ott, Chaos in Dynamical Systems (Cambridge
University Press, Cambridge, England, 1993).

[35] The natural measure can be approximated as d��x�=dx �
N�1 P2N

i�N�1 ��x� g
�i��1�� for N  1. Thus h ��ni is given

by the increase of the curve shown in Fig. 1 when the x
coordinate increases by n, averaged over �N � 1; 2N� with
N  n, and then divided by n. In the limit n=N ! 0 this
obviously converges to zero.

[36] F. Baldovin and A. Robledo, Phys. Rev. E 69, 045202(R)
(2004).

[37] In [4,15,16], the authors first make a partition of the
attractor basin into W equally long bins and take N
starting points xj0, j � 1 . . .N, in one of them. The spatial
order-q Tsallis entropy after n iterations, estimated from
the points xjn, is denoted as Sq�n�. Then the ‘‘generalized
KS entropy’’ of order q is defined as

Kq � lim
n!1

lim
W!1

lim
N!1

n�1Sq�n�: (14)

For q! 1 this is claimed in [4,15,16] to coincide with the
standard KS entropy, but in the latter the limits n! 1 and
W ! 1 are exchanged, the points are chosen randomly
according to the natural invariant measure, and S1�n�
should be replaced by the Shannon entropy for trajectories
of length n.

[38] L. F. Kozachenko and N. N. Leonenko, Problems of
Information Transmission (Engl Trans) 23, 95 (1987).

[39] P. Grassberger, physics/0307138.
[40] In contrast to Eq. (11), where one has to take first N ! 1,

then M ! 1, and at last n! 1, these limits have to be
taken simultaneously in Eq. (12). Taking, e.g., N ! 1
first, all Wn would be equal to W0. Equation (12) is
obtained with M> nlog2� and taking N=M ! 1 after
n! 1. It relies on the fact that the distribution of k val-
ues for fixed n is extremely sharply cut off at small k [26].

[41] If we start on the attractor, and if n � 2k �k � 1; 2; . . . ; �,
then there are 3k equally probable sn, giving Hn �
ln�3n=2�. For other values of n there two classes of
allowed sequences sn, with the sequences in the first class
twice as probable as those in the second class.

[42] P. Grassberger et al., J. Stat. Phys. 51, 135 (1988).
[43] J. Pickands, Ann. Stat. 3, 119 (1975).
1-4


