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Braid Topologies for Quantum Computation
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In topological quantum computation, quantum information is stored in states which are intrinsically
protected from decoherence, and quantum gates are carried out by dragging particlelike excitations
(quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories
define world lines in three-dimensional space-time, and the corresponding quantum gates depend only on
the topology of the braids formed by these world lines. We show how to find braids that yield a universal
set of quantum gates for qubits encoded using a specific kind of quasiparticle which is particularly
promising for experimental realization.

DOI: 10.1103/PhysRevLett.95.140503 PACS numbers: 03.67.Lx, 03.67.Pp, 73.43.2f
A quantum computer must be capable of manipulating
quantum information while simultaneously protecting it
from error and loss of quantum coherence due to coupling
to the environment. Topological quantum computation
(TQC) [1,2] offers a particularly elegant way to achieve
this using quasiparticles which obey non-Abelian statistics
[3,4]. These quasiparticles, which are expected to arise in a
variety of two-dimensional quantum many-body systems
[1,4–11], have the property that the usual phase factors of
�1 associated with the exchange of identical bosons or
fermions are replaced by noncommuting (non-Abelian)
matrices that depend only on the topology of the space-
time paths (braids) used to effect the exchange. The ma-
trices act on a degenerate Hilbert space whose dimension-
ality is exponentially large in the number of quasiparticles
and whose states have an intrinsic immunity to decoher-
ence because they cannot be distinguished by local mea-
surements, provided the quasiparticles are kept sufficiently
far apart.

In TQC this protected Hilbert space is used to store
quantum information, and quantum gates are carried out
by adiabatically braiding quasiparticles around each other
[1,2]. Because the resulting quantum gates depend purely
on the topology of the braids, errors occur only when
quasiparticles form ‘‘unintentional’’ braids. This can hap-
pen if a quasiparticle-quasihole pair is thermally created,
the pair separates, wanders around other quasiparticles,
and then recombines in a topologically nontrivial way.
However, such processes are exponentially unlikely at
low enough temperature. This built-in protection from
error and decoherence is an appealing feature of TQC
which may compensate for the extreme technical chal-
lenges that will have to be overcome to realize it.

It has been shown that several different kinds of non-
Abelian quasiparticles can be used for TQC [1,2,12–14].
Here we focus on what is arguably the simplest of these—
Fibonacci anyons [14]. These quasiparticles each possess a
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‘‘q-deformed’’ spin quantum number (q-spin) of 1, the
properties of which are described by a mathematical struc-
ture known as a quantum group [15]. As with ordinary
spin, there are specific rules for combining q-spin. For
Fibonacci anyons these ‘‘fusion’’ rules state that when
two q-spin 1 objects are combined, the total q-spin can
be either 0 or 1; and when a q-spin 0 object is combined
with a q-spin s object, where s � 0 or 1, the total q-spin is
s [16]. Remarkably, as shown in [14], these fusion rules fix
the structure of the relevant quantum group, uniquely
determining the quantum operations produced by braiding
q-spins around one another up to an overall Abelian phase
which is irrelevant for TQC.

One reason for focusing on Fibonacci anyons is that they
are thought to exist in an experimentally observed frac-
tional quantum Hall state [17,18]. It may also be possible
to realize them in rotating Bose condensates [7] and quan-
tum spin systems [10,11]. Strictly speaking, the quantum
group realized in some of these systems, and considered for
TQC in [2], also includes q-spins of 1

2 and 3
2 ; however, due

to a symmetry of this quantum group [6], the braiding
properties of q-spin 1

2 quasiparticles are equivalent to those
with q-spin 1, and the braid topologies we find below can
be used in either case.

The fusion rules for Fibonacci anyons imply that the
Hilbert space of two quasiparticles is two dimensional—
with basis states j��;��0i and j��;��1i. Here the notation
��;��a represents two quasiparticles with total q-spin a.
When a third quasiparticle is added, the Hilbert space is
three dimensional, and is spanned by the states
j���;��0;��1i, j���;��1;��1i, and j���;��1;��0i. The gen-
eral result is that the dimensionality of an N-quasiparticle
state is the �N � 1�st Fibonacci number. To use this Hilbert
space for quantum computation, we follow Freedman et al.
[2], and encode qubits into triplets of quasiparticles with
total q-spin 1, taking the logical qubit states to be j0Li �
j���;��0;��1i and j1Li � j���;��1;��1i. The remaining
3-1 © 2005 The American Physical Society
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FIG. 2. (a) Elementary three-quasiparticle braids. The pictures
represent quasiparticle world lines in 2� 1-dimensional space-
time, with time flowing from left to right. The matrices �1 and
�2 are the transition matrices produced by these elementary
braids which act on the three-dimensional Hilbert space shown

���p
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state with total q-spin 0 is then a noncomputational state,
jNCi � j���;��1;��0i. This encoding, illustrated in Fig. 1,
can be viewed as a q-deformed version of the three-spin
qubit encoding proposed for exchange-only quantum com-
putation [19]. As in that case, qubits can be measured by
determining the q-spin of the two leftmost quasiparticles,
either by performing local measurements once the quasi-
particles are moved close together [1] or possibly by
performing interference experiments [20,21]. Similar
schemes can be used for initialization. The price for in-
troducing this encoding is that care must now be taken to
minimize transitions to noncomputational states, known as
leakage errors, when carrying out computations.

Figure 2(a) shows elementary braiding operations for
three quasiparticles together with the matrices which de-
scribe the transitions they induce in the Hilbert space
illustrated in Fig. 1 [2,6,14]. Any three-quasiparticle braid
can be constructed out of these elementary operations and
their inverses. The corresponding transition matrix can
then be computed by simply multiplying the appropriate
matrices as shown in Fig. 2(b). The upper 2� 2 blocks of
these matrices act on the computational qubit space, and
the lower right element is a phase which multiplies jNCi.
This block diagonal form illustrates that if a group of
quasiparticles is in a q-spin eigenstate then braiding of
quasiparticles within this group does not lead to transitions
out of this eigenstate. It follows that single-qubit gates
performed by braiding quasiparticles within a qubit will
not lead to leakage error.

To find braids which perform a given single-qubit gate,
we first carry out a brute force search of three-quasiparticle
braids with up to 46 interchanges. This exhaustive search
typically yields braids approximating the desired target
gate to within a distance of �� 1–2� 10	3 (here we
define distance between gates using the operator norm—
see Fig. 3 for a definition). If more accuracy is required,
brute force searching becomes exponentially more difficult
and rapidly becomes unfeasible. Fortunately, a powerful
theorem due to Solovay and Kitaev [22,23] guarantees that
given a set of gates generated by finite braids which is
sufficiently dense in the space of all gates (easily generated
for three quasiparticles) braids approximating arbitrary
single-qubit gates to any required accuracy can be found
efficiently, with the length of the braid growing as
�j log�jc, where c ’ 4.

We now turn to the significantly more difficult problem
of finding braids which approximate a desired two-qubit
NC 1 0
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FIG. 1. Basis states for the three-dimensional Hilbert space of
three quasiparticles and qubit encoding. The ovals enclose
groups of quasiparticles in q-spin eigenstates labeled by the
corresponding eigenvalues. The states j0Li and j1Li (denoted,
respectively, j���;��0;��1i and j���;��1;��1i in the text) span
the computational qubit space, while the state jNCi (denoted
j���;��1;��0i in the text) is a noncomputational state.
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gate. In this case there are six quasiparticles, and the
Hilbert space is 13 dimensional. The elementary braid
matrices acting on this space are again block diagonal,
with 5� 5 (total q-spin 0) and 8� 8 (total q-spin 1) blocks
[24]. It is known that braiding these six quasiparticles
generates a set of unitary operations which is dense in
the space of all such block diagonal operations [2,14],
and the Solovay-Kitaev theorem again guarantees one
can in principle construct braids to approximate any de-
sired operation of this form [22]. However, unlike the
single-qubit case, actual implementation of this procedure
is problematic. The space of unitary operations for six
quasiparticles is parametrized by 87 continuous parame-
ters, as opposed to 3 for the three-quasiparticle case, and
searching for braids which approximate a desired quantum
gate in this high dimensional space is an extremely difficult
numerical problem. To circumvent this difficulty, we have
found constructions for a particular class of two-qubit gates
(controlled-rotation gates) which require only finding a
finite number of three-quasiparticle braids. The resulting
reduction of the dimensionality of the search space from 87
to 3 makes it possible for the first time to compile accurate
braids for a class of two-qubit gates which can be system-
atically improved using the Solovay-Kitaev theorem.

Our constructions are based on two essential ideas. First,
we weave a pair of quasiparticles (the control pair) from
one qubit (the control qubit) through the quasiparticles
forming the second qubit (the target qubit). By weaving
in Fig. 1. Here � � � 5	 1�=2 is the inverse of the golden
mean. The upper 2� 2 blocks of these matrices act on the
computational qubit space (total q-spin 1) and are used to
perform single-qubit rotations, while the lower right element is
a phase which multiplies jNCi. (b) A general three-quasiparticle
braid and the corresponding matrix expression for the transition
matrix it produces. Here j ii is the initial state and j fi the final
state after braiding. Note that these (and subsequent) figures only
represent the topology of the braid. In any actual implementa-
tion, quasiparticles will have to be kept sufficiently far apart to
keep from lifting the topological degeneracy.
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FIG. 3 (color online). (a) A three-quasiparticle braid in which
one quasiparticle is woven around two static quasiparticles and
returns to its original position (left), and yields approximately
the same transition matrix as braiding the two stationary quasi-
particles around each other twice (right). The corresponding
matrix equation is also shown. To characterize the accuracy of
this approximation, we define the distance between two matri-
ces, U and V, to be � � kU	 Vk, where kOk is the operator
norm of O equal to the square-root of the highest eigenvalue of
OyO. The distance between the matrices resulting from the
actual braiding (left) and the desired effective braiding (right)
is � ’ 2:3� 10	3. (b) A two-qubit braid constructed by weaving
a pair of quasiparticles from the control qubit (top) through the
target qubit (bottom) using the weaving pattern from (a). The
result of this operation is to effectively braid the upper two
quasiparticles of the target qubit around each other twice if the
control qubit is in the state j1Li, and otherwise do nothing. This
is an entangling two-qubit gate which can be used for universal
quantum computation. Since all effective braiding takes place
within the target qubit, any leakage error is due to the approxi-
mate nature of the weave shown in (a). By systematically
improving this weave using the Solovay-Kitaev construction,
leakage error can be reduced to whatever level is required for a
given computation.
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we mean that the target quasiparticles remain fixed while
the control pair is moved around them as an immutable
group [see, for example, Figs. 3(b) and 4(c)]. If the q-spin
of the control pair is 0, the result of this operation is the
identity. However, if the q-spin of the control pair is 1, a
FIG. 4 (color online). (a) An injection weave for which the produc
identity to a distance of � ’ 1:5� 10	3. This weave injects a qua
changing any of the underlying q-spin quantum numbers. (b) A w
� ’ 8:5� 10	4. (c) A controlled-NOT gate constructed using the wea
qubit, perform a NOT operation on the injected target qubit, and then
qubit. The distance between the gate produced by this braid acting on
gate is � ’ 1:8� 10	3 and � ’ 1:2� 10	3 when the total q-spin of
shown in (a) and (b) can be made as accurate as necessary using the
gate to any desired accuracy. By replacing the central NOT weave,
procedure.
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transition is induced. If we choose the control pair to
consist of the two quasiparticles whose total q-spin de-
termines the state of the control qubit, this construc-
tion automatically yields a controlled (conditional) opera-
tion. Second, we deliberately weave the control pair
through only two target quasiparticles at a time. Since
the only nontrivial case is when the control pair has
q-spin 1, and is thus equivalent to a single quasiparticle,
this reduces the problem of constructing two-qubit gates to
that of finding a finite number of specific three-
quasiparticle braids.

Figure 3(a) shows a three-quasiparticle braid in which
one quasiparticle is woven through the other two and
then returns to its original position. The resulting unitary
operation approximates that of simply braiding the two
static quasiparticles around each other twice to a distance
of � ’ 2:3� 10	3. Similar weaves can be found which
approximate any even number, 2m, of windings of the
static quasiparticles. Figure 3(b) shows a two-qubit braid
in which the pattern from Fig. 3(a) is used to weave the
control pair through the target qubit. If the control qubit
is in the state j0Li, this weave does nothing, but if it is in the
state j1Li, the effect is equivalent to braiding two quasi-
particles within the target qubit. Thus, in the limit �! 0,
this effective braiding is all within a qubit and there are no
leakage errors. The resulting two-qubit gate is a controlled
rotation of the target qubit through an angle of 6m�=5,
which, together with single-qubit rotations, provides a
universal set of gates for quantum computation provided
m is not divisible by 5 [25]. Carrying out one iteration of
the Solovay-Kitaev construction [22,23] on this weave
using the procedure outlined in [26] reduces � by a factor
of �20 at the expense of a factor of 5 increase in length.
Subsequent iterations can be used to achieve any desired
accuracy.

A similar construction can be used to carry out arbitrary
controlled-rotation gates. Figure 4(a) shows a braid in
t of elementary braiding matrices, also shown, approximates the
siparticle (or any q-spin 1 object) into the target qubit without
eaving pattern which approximates a NOT gate to a distance of
ves shown in (a) and (b) to inject the control pair into the target
eject the control pair from the target qubit back into the control
the computational two-qubit space and an exact controlled-NOT

the six quasiparticles is 0 and 1, respectively. Again, the weaves
Solovay-Kitaev theorem, thereby improving the controlled-NOT

arbitrary controlled-rotation gates can be constructed using this
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which one quasiparticle is again woven through two static
quasiparticles, but this time does not return to its ori-
ginal position. The unitary transformation produced by
this weave approximates the identity operation to a dis-
tance of � ’ 1:5� 10	3, where, as above, the accuracy of
this approximation can be systematically improved by the
Solovay-Kitaev theorem. In the limit �! 0, the effect of
this weave is to permute the three quasiparticles in-
volved without changing any of the underlying q-spin
quantum numbers, as shown in the figure. It can therefore
be used to safely inject a quasiparticle, or any object with
q-spin 1, into a qubit. Figure 4(b) then shows a weave
which performs an approximate NOT gate on the target
qubit. These two weaves are used to construct the two-
qubit braid shown in Fig. 4(c). In this braid, the control
pair is first injected into the target qubit using the ‘‘injec-
tion weave.’’ When the control pair has q-spin 1 the state of
the modified target qubit is unchanged after injection—the
only effect is that one of the target quasiparticles has
been replaced by the control pair. A NOT operation is
then performed on the injected target qubit by weaving
the control pair inside the target using the pattern from
Fig. 4(b). In the limit of an exact injection weave this
braiding is all within a q-spin eigenstate and there are no
leakage errors. Finally the control pair is ejected from
the target using the inverse of the injection weave, thereby
returning the control qubit to its original state. As be-
fore, if the control qubit is in the state j0Li the result is
the identity. However, if the control qubit is in the state
j1Li, a NOT gate is performed on the target qubit. This
construction therefore produces a controlled-NOT gate,
up to single-qubit rotations [27]. Because a weave
producing any single-qubit rotation can be used in-
stead of the NOT weave shown in Fig. 4(b) this construction
can be used to produce an arbitrary controlled-rotation
gate.
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