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Ground-State Decay Rate for the Zener Breakdown in Band and Mott Insulators
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Nonlinear transport of electrons in strong electric fields, as typified by dielectric breakdown, is
reformulated in terms of the ground-state decay rate originally studied by Schwinger in nonlinear
QED. We discuss the effect of electron interaction on Zener tunneling by comparing the dielectric
breakdown of the band insulator and the Mott insulator, where the latter is studied by the time-dependent
density-matrix renormalization group. The relation with the Berry’s phase theory of polarization is also
established.
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Introduction.—While there is mounting interest in non-
linear responses in many-body systems, the dielectric
breakdown of Mott insulators is conceptually interesting
in a number of ways. For band insulators the dielectric
breakdown has been well understood in terms of the Zener
tunneling [1] across the valence and conduction bands,
which triggers the breakdown. By contrast, nonlinear prop-
erties in strongly correlated electron systems should be
qualitatively different, since the excitation gap in the in-
sulating side of Mott’s metal-insulator transition, arising
from the electron-electron repulsion, is something totally
different from the band gap in its origin and nature.
Experimentally, Taguchi et al. observed a dielectric break-
down by applying strong electric fields to typical Mott
insulators (quasi-one-dimensional cuprates, Sr2CuO3,
SrCuO2) [2]. The authors of this Letter, with Arita, pro-
posed theoretically that the phenomenon may be explained
in terms of a Zener tunneling for many-body levels, and
obtained the threshold field strength [3].

Now, there is an important difference between the Zener
breakdowns in the band and Mott insulators: excitations
(i.e., electrons and holes produced by the field) move freely
in the former, while they must interact with surrounding
electrons in the latter and become dissipated. In other
words, while we have only to worry about the valence-
conduction gap, we have to deal with many charge gaps
among the many-body levels when the interaction is
present. Several authors, including the present authors,
have shown, with effective models, that a suppression of
quantum tunneling due to the quantum interference should
occur in many-level systems driven by external forces (see
[4–6] and references therein).

The tunneling rate, first obtained by Zener, gives the
amount of the excitations, and is proportional to the leak-
age current if all the excitations are absorbed by electrodes
[1]. So the rate is a crucial quantity, but theoretical studies
have been quite scant: Even for band insulators, the quan-
tity is only calculated for systems having a simple band
dispersion. More importantly, Zener’s tunneling rate was
based on a one-body WKB approach, so we must extend
the formalism to many-body systems. Specifically, the
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actual breakdown should be related to the scattering be-
tween excited states in many-body systems as noted above.
While this is shown to lead to a suppression of the current
in a toy (quantum-walk) model [6], we are still badly in
need of studies for microscopic models, since the existing
calculation for the Hubbard model [3] was limited to small
systems (hence to short-time behaviors), while the long-
time behavior, affected strongly by scattering between
excited states, is in fact relevant.

In this Letter, we propose to determine the tunneling rate
from the ground-state-to-ground-state transition ampli-
tude, whose long-time asymptotic defines the effective
Lagrangian. The effective-Lagrangian approach was
evoked by Heisenberg and Euler in their study of quantum
electrodynamics (QED) in strong electric fields [7]. This
was extended by Schwinger to obtain the decay rate of the
QED vacuum [8]. It is well known that Schwinger’s
electron-positron creation rate can be understood by the
Landau-Zener mechanism (see, e.g., [9]). What we have
done here is the following: (i) We first express the effective
Lagrangian for band insulators, which contains higher-
order terms in the Landau-Zener’s tunneling probability.
Since breakdown of band insulators is a well understood
subject, the main aim of this section is to introduce the
notations for later discussions. (ii) We then move on to a
Mott insulator in strong electric fields. The ground-state
decay rate is obtained for a microscopic (one-dimensional
half-filled Hubbard) model with the time-dependent
density-matrix renormalization group [10,11]. From this
we determine the threshold electric field to construct the
‘‘dielectric breakdown phase diagram.’’ (iii) Finally we
comment on an intriguing link between Heisenberg-
Euler-Schwinger’s effective Lagrangian approach and a
recent, Berry’s phase approach to polarization proposed
in Refs. [12–16].

Dielectric breakdown of a band insulator.—We start
with the dielectric breakdown of band insulators in an
electric field F within the effective-mass approximation.
For simplicity we take a pair of hyperbolic bands "��k� �
�

����������������������
V2 � v2k2
p

(considered here in d spatial dimensions),
where V is the band gap, ���� represents the valence
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(conduction) band, and v the asymptotic slope of the
dispersion.

We first obtain the ground-state–to–ground-state tran-
sition amplitude with the time-dependent gauge in the
periodic boundary condition. There, a time-dependent
AB flux measured by the flux quantum, ���� � FL�=h
(with the electronic charge put equal to e � 1, L the
system size) is introduced to induce an electric field F,
which makes the Hamiltonian time dependent as
H������ �

P
k;���"��k�

2�
L ����ek�c

y
��k�c��k�. Here

ek is the unit vector parallel to F, and cy��k� the creation
operator with spin indices dropped. If we denote the
ground state of H��� as j0;�i and its energy as E0���,
the ground-state–to–ground-state transition amplitude is
defined as

���� � h0;����jT̂e��i=@�
R
�

0
H���s��dsj0;��0�i

� e�i=@�
R
�

0
E0���s��ds; (1)

where T̂ stands for the time ordering. The effective
Lagrangian L�F� for the quantum dynamics is defined
from the asymptotic behavior, ���� � e�i=@��L

dL�F�. The
imaginary part of the effective Lagrangian gives the decay
rate ��F�=Ld � 2 ImL�F�=@ in the manner of Callan and
Coleman [17] (see also [18]). ��F�=Ld gives the rate of the
exponential decay for an unstable vacuum (ground state),
which, in the case of Zener tunneling, corresponds to the
creation rate of electrons and holes. Originally, the creation
rate for Dirac particles was calculated by Schwinger with
the proper regularization method [8]. Below, we present a
simpler derivation which can be extended to general band
insulators.

The dynamics of the one-body model can be solved
analytically, since we can cut the model into slices,
each of which reduces to Landau-Zener’s two band model
[19,20]. Namely, if we decompose the k vector as �k?; kk�,
where k? (kk) is the component perpendicular (parallel) to
F, each slice for a given k? is a copy of Landau-Zener’s

model with a gap �band�k� 	 2
�����������������������
V2 � v2k2

?

q
. The Landau-

Zener transition takes place around the level anticrossing
on which kk �

2�
L ���� moves across the Brillouin zone

(BZ) in a time interval �� � h=F. The process can be
expressed as a transition,

cy��k� !
�������������������
1� p�k�

q
e�i��k�cy��k� �

����������
p�k�

q
cy��k�;

cy��k� ! �
����������
p�k�

q
cy��k� �

�������������������
1� p�k�

q
ei��k�cy��k�:

(2)

Here the tunneling probability for each k is given by the
Landau-Zener (LZ) formula [19,20],

p�k� � exp
�
��
��band�k�=2�2

vF

�
; (3)

while the phase ��k� � ���k� � ��k� consists of the triv-
ial dynamical phase, @��k� �

R
��
0 "��k�

2�
L ��s�ek�ds,

and the Stokes phase [20,21],
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��k� �
1

2
Im

Z 1
0
ds
e�i��band�k�=2�2s

s

�
cot�vFs� �

1

vFs

�
:

The Stokes phase, a nonadiabatic extension of Berry’s
geometric phase [22], depends not only on the topology
of the path but also on the field strength F [23]. In terms of
the fermion operators the ground state is obtained by filling
the lower band j0;�i �

Q
kc
y
��k�

2�
L �ek�jvaci, where

jvaci is the fermion vacuum satisfying c��k�jvaci � 0. If
we assume that excited charges are absorbed by electrodes
[24] we obtain from Eqs. (1) and (2)

ReL�F� � �F
Z

BZ

dk

�2��d
��k�
2�

;

ImL�F� � �F
Z

BZ

dk

�2��d
1

4�
ln
1� p�k��;

(4)

where the dynamical phase � cancels the factor

e�i=@�
R
�

0
E0���s��ds in Eq. (1). Performing the k integral in

Eq. (4) leads to the ground-state decay rate per volume for
a d-dimensional hyperbolic band,

��F�=Ld �
F

�2��d�1h

�
F
v

�
�d�1�=2 X1

n�1

1

n�d�1�=2

� e��n�V
2=vF�

�
erf
� ������������
nv�3

F

s ��
d�1

: (5)

To include the spin degeneracy we multiply this by �2s�1�
for a spin s case.

If we compare Eqs. (4) and (5) with Heisenberg, Euler,
and Schwinger’s results of the nonlinear responses of the
QED vacuum in strong electric fields [7,8], two significant
differences can be noticed. One is the error function ap-
pearing in Eq. (5), which is due to the lattice structure (with
the k integral restricted to the BZ). In the strong-field limit
(F ! 1), the F�d�1�=2 factor in Eq. (5) is cancelled, and the
tunneling rate approaches a universal function,
��F�=Ld ! � F

h ln
1� exp���Fband
th =F��, independent

of d. Another, quantitative difference appears in the
Zener’s threshold voltage [25]; Fband

th � V2=va (a: lattice
constant) for the dielectric breakdown is many orders
smaller than the threshold for the QED instability FQED �
m2
ec3

@
� 1016 V=cm.

Dielectric breakdown of a 1D Mott insulator.—Having
clarified the one-body case, we now discuss the effect of
the strong electron correlation on a nonlinear transport, i.e.,
the dielectric breakdown in the one-dimensional Mott
insulator. We employ the half-filled Hubbard model in
static electric fields. In the time-independent gauge, the
Hamiltonian is H � FX̂ with H � �t

P
i	�c

y
i�1	ci	 �

H:c:� �U
P
jnj"nj#, and X̂ �

P
jjnj the position operator

[14]. When F � 0 the ground state is a Mott insulator
having a many-body energy gap so far as U > 0 [26,27].

After a strong electric field is switched on at � � 0,
quantum tunneling begins to take place, first from the
ground state to the lowest excited states, and then to higher
1-2
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FIG. 1. (a) The temporal evolution of the ground-state survival
probability j����j2 after the electric field F is switched on at
� � 0 in the 1D half-filled Hubbard model with U=t � 3:5,
obtained with the time-dependent DMRG for L � 50 with the
size of the DMRG Hilbert space m � 150 and the time step
d� � 0:02. The dashed line represents� lnj����j2 � ��F��� c
for F=t � 0:17. (b) The decay rate versus F in the half-filled
Hubbard model. Dashed line is a fit to Eq. (7), where FMott

th �U� is
the threshold.
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ones. The tunneling to the lowest excited states, which
dominates the short-time behavior, has been shown to be
understood with the Landau-Zener formula [see Eq. (8)]
[3], but it is the long-time behavior that should be relevant
to the actual breakdown.

The ground-state–to–ground-state transition amplitude
is, in the time-independent gauge,

���� � h0je��i=@���H�FX̂�j0ie�i=@��E0 ; (6)

where we denote the ground state of H as j0i and its en-
ergy as E0. The transition amplitude is calculated here
numerically by first obtaining j0i in the open boundary
condition with the density-matrix renormalization group
(DMRG) method, and then solving the time-dependent
Schrödinger equation for the many-body system with the
time-dependent DMRG [10,11]. The ground-state decay
rate ��F�=L in strong electric fields F is then obtained
from the asymptotic behavior of ����.

Figure 1(a) shows the temporal evolution of the ground-
state survival probability j����j2 for a system with U=t �
3:5. We notice that, as time increases, the slope of
� lnj����j2 decreases after an initial stage. The slope is
proportional to the decay rate, so its decrease implies a
suppression of the tunneling. We can regard this as evi-
dence that charge excitations are initially produced due to
the Zener tunneling, but that, as the population of the
excitations grows, scattering among the excited states be-
comes important. This results in the ‘‘pair annihilation’’ of
carriers, which acts to suppress the tunneling rate. We have
determined ��F� from the long-time behavior with a fitting
� lnj����j2 � ��F��� const.

The decay rate per length ��F�=L is plotted in Fig. 1(b),
where we have varied the system size (L � 30; 50) to
check the convergence. ��F�=L is seen to remain vanish-
ingly small until the field strength exceeds a threshold. To
characterize the threshold Fth�U� for the breakdown we
can evoke the form obtained above for the one-body sys-
tem [Eq. (5)],

��F�=L � �
2F
h
a�U� ln

�
1� exp

�
��

FMott
th �U�
F

��
(7)

(with a factor of 2 recovered for the spin degeneracy). The
interest here is whether this holds when we replace Fband

th
with FMott

th �U�. The factor a�U� is a parameter representing
the suppression of the quantum tunneling. The dashed line
in Fig. 1(b) is the fitting for U=t � 3:5, where we can see
that the fitting, including the essentially singular form in F,
is surprisingly good, given a small number of fitting pa-
rameters. The value of a�U� turns out to be smaller than
unity (taking between 0.77 to 0.55 asU=t is increased from
2.5 to 5.0).

In Fig. 2 we plot the U dependence of FMott
th . The dashed

line is the prediction of the Landau-Zener formula [see
Eq. (3)]
13760
FLZ
th �U� �


�charge�U�=2�2

v
; (8)

which was first applied to the dielectric breakdown of the
half-filled Hubbard model in Ref. [3]. For the size of the
Mott (charge) gap we use the Bethe-ansatz result:

�charge�U� �
8t
U

R
1
1

��������
y2�1
p

sinh�2�yt=U� dy [26,27] with v=t � 2.
So the overall agreement between the threshold for the

Hubbard model and Eq. (8) is again confirmed, but to be
more precise we note the following. Since the scattering
among charge excitations suppresses tunneling, the thresh-
old for the breakdown in interacting systems is expected to
be larger than the Landau-Zener prediction [Eq. (8)]. It was
proposed in [6] that the wave function in electric fields just
below the threshold is localized (on energy axis) around
the ground state, which physically corresponds to a state
where the production and annihilation of excited states are
balanced due to the quantum interference. The F=t � 0:11
result in Fig. 1(a) is typical of such states, where
� lnj����j2 first increases but soon saturates. When we fur-
ther increase the field strength, the production exceeds the
annihilation, which leads to an exponential decay of the
ground state with rate ��F�=L. The system is now metallic
in the sense that there are carriers that contribute to
transport.

As for the question of whether the dielectric breakdown
in the nonlinear regime may be regarded as a true transi-
1-3
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FIG. 2. The dielectric breakdown phase diagram on �U;F� for
the one-dimensional Hubbard model. The symbols are the
threshold FMott

th �U� obtained by fitting the decay rate ��F�=L
to Eq. (7), while the dashed line is the prediction F � FLZ

th �U� of
the Landau-Zener formula Eq. (8).
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tion, future studies should be needed. The form [Eq. (7)]
we used for fitting the tunneling rate assumes that the
transition is a smooth crossover around F� FMott

th �U�.
However, the toy (quantum-walk) model calculation indi-
cates that the breakdown of many-body systems is a
localization-delocalization transition [6]. This suggests
that the tunneling rate and other physical quantities may
become singular at the breakdown field, in which case
the I-V characteristics exhibits a jump or a kink. In
our numerical calculation, while we do find an indica-
tion of localization for F=t � 0:11 in Fig. 1(a), we observe
no singularities in the tunneling rate. So, future calcula-
tions will reveal the nature of the transition around the
breakdown.

Finally, we comment on the relation of the effective-
Lagrangian approach with earlier approaches, especially
the Berry’s phase theory of polarization [12–16]. There,
the ground-state expectation value of the twist operator
e�i�2�=L�X̂, which shifts the phase of electrons on site j
by� 2�

L j [16], plays a crucial role. It was revealed that the
real part of a quantity

w �
�i
2�

lnh0je�i�2�=L�X̂j0i (9)

gives the electric polarization, Pel � �Rew [14], while its
imaginary part gives a criterion for metal-insulator transi-
tion; i.e., D � 4� Imw is finite in insulators and divergent
in metals [15]. The effective action in the present work is
regarded as a nonadiabatic (finite electric field) extension
of w. To give a more accurate argument, recall that the
effective Lagrangian can be expressed as L�F� � �i@�L �

ln�h0je��i=@���H�FX̂�j0ie�i=@��E0� for d � 1. Let us set � �
h=LF and consider the small F limit. For insulators we can
replace H with the ground-state energy E0 to have

L �F� � wF (10)

in the linear response regime. Thus, the real part of
Heisenberg-Euler’s expression [7] for the nonlinear polar-
ization PHE�F� � �

@L�F�
@F naturally reduces to the Berry’s

phase formula Pel in the F ! 0 limit [cf. Equation (4)]. Its
13760
imaginary part, which is related to the decay rate as
ImPHE�F� � �

@

2
@��F�=L
@F , reduces to � D

4� and gives the
criterion for the transition, originally proposed for the
zero field case.
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Note added.—After the completion of this work, we
noticed a recent paper by Green and Sondhi [28], where
nonlinear transport near a superfluid or Mott transition is
studied from the point of view of the Schwinger
mechanism.
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