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Ground States and Thermal States of the Random Field Ising Model
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The random field Ising model is studied numerically at both zero and positive temperature. Ground
states are mapped out in a region of random field and external field strength. Thermal states and
thermodynamic properties are obtained for all temperatures using the Wang-Landau algorithm. The
specific heat and susceptibility typically display sharp peaks in the critical region for large systems and
strong disorder. These sharp peaks result from large domains flipping. For a given realization of disorder,
ground states and thermal states near the critical line are found to be strongly correlated—a concrete
manifestation of the zero temperature fixed point scenario.
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FIG. 1. Ground states of the RFIM in the H-� plane. (a) All
the ground states of a single 323 realization of disorder. Along
each line two ground states coexist that differ by flipping a single
connected domain. The thickness of a line is proportional to the
magnetization jump across the line. (b) The same realization as
in (a), but only lines with the bond energy jump �e > 0:03 are
shown. Along the H � 0 axis there are two major jumps, which
are labeled as 1 and 2 in the graph.
The random field Ising model (RFIM) is one of the
simplest nontrivial spin models with quenched disorder.
Despite 30 years of study it is still not well understood. It
has been proved that an ordered phase exists for suffi-
ciently low temperature and dimension d > 2 [1–4]. The
phase transition between the ordered and disordered phases
for d > 2 is believed to be continuous and controlled by a
zero temperature fixed point [5–7]. Currently, there is no
controlled renormalization group analysis of the RFIM
phase transition, and Monte Carlo simulations [8–11] are
restricted to small systems and have been inconclusive. As
the strength of the random field increases, the transition
moves to lower temperature and the critical line intersects
the zero temperature line at a zero temperature phase
transition. Numerical studies of the zero temperature tran-
sition [12–15] play an important role in understanding the
model. Ground states are much easier to simulate than
thermal states and, according to the zero temperature fixed
point hypothesis, the T � 0 and T > 0 transitions are in the
same universality class. Critical exponents have been ob-
tained from zero temperature studies that are mostly con-
sistent with the scaling theories [5–7], series methods [16],
and real space renormalization group approaches [17–19].

In this Letter we present numerical results at both T � 0
and T > 0 for the same realizations of random fields. For
T > 0 we use the Wang-Landau [20] and Metropolis algo-
rithms. For T � 0 we find ground states using the push-
relabel algorithm [12,21]. A major conclusion of the Letter
is that spin configurations found near the critical line are
strongly correlated with ground states near the zero tem-
perature critical point. This observation is consistent with
the original Imry-Ma analysis, incorporated in the zero
temperature fixed point scenario, that the large scale prop-
erties of the critical point depend on the competition
between random fields and couplings with thermal fluctu-
ations serving only to renormalize the strength of these
couplings. However, the correlation found here for single
realizations of disorder along the critical line is not implied
by the existence of a zero temperature fixed point, which
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implies only the similarity of zero temperature and positive
temperature critical ensembles.

The Hamiltonian of the RFIM studied in this Letter is

H � �
X

hi;ji

sisj � �
X

i

hisi �H
X

i

si: (1)

The summation hi; ji is over all nearest neighbors i and j on
a simple cubic lattice with periodic boundary conditions,
spins si take the value �1, � is the strength of disorder, hi
is the random field chosen from a Gaussian distribution
with mean zero and variance one, and H is the external
field. Two important quantities are the magnetization (or-
der parameter) m � �1=L3�

P
isi and the bond energy e �

�1=L3�
P
hi;jisisj. We define the disorder strength separately

from the normalized random fields because one of our
primary concerns is to examine single realizations of ran-
dom fields as disorder strength, temperature and external
field are varied. Previous analytic [22] and real space
renormalization group studies [17] also considered single
realizations of disorder at the phase transition but do not
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compare realizations at different disorder strengths as is
done here.

Consider the set of ground states of a single realization
of disorder. We obtain these using a method first introduced
by Ogielski [12]. To determine the ground state at a given
value of H and �, the RFIM problem is mapped onto the
maxflow problem, which is then solved using the push-
relabel algorithm [12,21,23,24]. The set of all ground
states in a region in the H-� plane is mapped out using a
method described in [25] and similar to the techniques
discussed in [15,26]. Figure 1(a) is a portrait of all the
ground states of a single realization of random fields in a
323 system in a small region of the H-� plane near the
finite-size critical point, discussed below. Each line repre-
sents values of the parameters for which two ground states
are degenerate and across each line a single connected
domain is flipped. Within each polygon bounded by these
lines, a single spin configuration is the ground state. At
points where two lines cross, four ground states are degen-
erate and the four configurations differ by the orientation of
two separate domains. More interesting are ‘‘triple points’’
where a line bifurcates into two lines in a Y shape. At triple
points three ground states are degenerate, but the three
domains corresponding to the three lines are not indepen-
dent. The spin configuration at the top of the Y results from
the breakup of the large domain that flips across the vertical
line of the Y as shown schematically in Fig. 2. The triple
point has some characteristics of a thermal first-order
transition where two ordered states coexist with a disor-
dered state.

When a coexistence line is crossed and a domain is
flipped, physical quantities except for the total energy are
discontinuous. To visualize the size of the discontinuity,
lines are drawn with a thickness that is proportional to the
jump in the magnetization. The picture is simplified by
removing the large number of lines with small bond energy
jump (�e < 0:3), as shown in Fig. 1(b). The simplified
picture reveals a treelike structure built from triple points.
-  - +  +
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FIG. 2 (color online). Schematic picture of a triple point. The
shaded ovals show the orientation of spins within a single
domain that flips crossing the vertical line and is broken into
two pieces crossing the diagonal lines.
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The triple point with the largest bond energy discontinuity
is located at the center of the picture. In the region above
this triple point the magnetization is small while the line
extending below the triple point is the coexistence line
separating the plus and minus ordered states. In Ref. [15]
this triple point was identified as the finite-size critical
point and its scaling properties were studied. The size of
the discontinuity in the bond energy is governed by the
specific heat exponent. We have also examined the large
discontinuities in bond energy and magnetization along the
H � 0 line and have shown [25] that these scale with the
specific heat exponent and magnetic exponents, respec-
tively. Within a region that shrinks as L�����2=�� and
L1=� in the H and � directions, respectively, the treelike
structure is statistically self-similar but not self-
averaging—each realization has a unique treelike
structure.

We study the RFIM as a function of temperature using
the Wang-Landau [20] and the Metropolis algorithms. The
Wang-Landau algorithm is a flat histogram Monte Carlo
method that automatically determines the density of states.
(b)

FIG. 3. The specific heat (a) and the susceptibility (b) of the
same 323 realization as in Fig. 1 with � � 2:0 and H � 0. Two
sharp peaks, labeled 1 and 2, are observed, which correspond to
the two large jumps 1 and 2 in Fig. 1, respectively.
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Thermodynamic quantities at all temperatures are then
derived from the density of states and the statistics of the
magnetization as a function of energy. The algorithm
smooths the energy landscape and is much more efficient
than the conventional Metropolis algorithm for sweeping a
range of temperatures. Once a temperature is chosen for
detailed study, the Metropolis algorithm is used to find the
thermally averaged spin configuration. We determined the
specific heat and susceptibility for systems up to size 323.
We find that for large enough systems (� 163) and strong
enough disorder, the specific heat and the susceptibility
typically display one or more sharp peaks. In Fig. 3 we
show the specific heat and the susceptibility as a function
of temperature for the same realization of normalized
random fields whose ground states are shown in Fig. 1.
The random field strength is �0 � 2:0 and the external
field is set to zero. Two sharp peaks appear in both quan-
tities at the same temperatures. We have simulated 100 163

realizations with �0 � 1:5 and find that about 1=3 of them
have sharp peaks. The number increases to 1=2 if the
random field is strengthened to �0 � 2:0. For size 323
FIG. 4. Spin configurations near the critical points at zero
temperature and finite temperatures for a single realization of
normalized random fields. Each panel is the same plane of a 323

realization with black representing spin down; white, spin up;
and shades of gray, the thermally averaged spin state. From left
to right in the top two rows, panels are at � (T) before, between,
and after jumps (peaks) 1 and 2 in Fig. 1 (Fig. 3). Specifically,
panels (a), (b), and (c) are ground states at � � 2:36, 2.41, and
2.54, respectively. Panels (d), (e), and (f) are at � � 2:0 and T �
2:2, 2.5, and 2.8, respectively. Panels (g), (h), and (i) are at � �
0:5 and temperatures 4.0, 4.3, and 4.45, near the peak in the
specific heat at T � 4:375.
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and �0 � 2:0 we have simulated 9 realizations, and sharp
peaks are observed for all of them. We tentatively conclude
that the probability of sharp peaks appearing increases with
the system size and the strength of random field.

The sharp peaks in the specific heat and susceptibility
can be understood within the zero temperature fixed point
picture of the RFIM phase transition. This picture predicts
that the behavior in the critical region at finite temperature
is determined by the competition between couplings and
random fields with thermal fluctuations serving only to
renormalize the strength of these quantities. One conclu-
sion of this Letter is that this scenario appears to be true for
individual realizations of normalized random fields. The
sharp peaks in the thermodynamic quantities can be
matched one to one with the large jumps at zero tempera-
ture. Furthermore, the spin configurations on either side of
the sharp peaks can be mapped onto the ground states on
either side of the corresponding large jumps.

For a single realization of random fields, we obtain the
thermally averaged spin configuration near the peaks at
finite temperature, and compare these thermal states to the
ground states near the two largest jumps at zero tempera-
ture. Figures 4(d)– 4(f) show one plane through the system
with �0 � 2:0 and at temperatures just before peak 1 (T �
2:2), just after peak 1 (T � 2:5), and just after peak 2 (T �
2:8), respectively. The difference among the states shows
that the sharp peak corresponds to flipping a relatively
large domain. It is evident that these three states are
strongly correlated with the ground state spin configuration
before jump 1 (� � 2:36), just after jump 1 (� � 2:41),
and just after jump 2 (� � 2:54), as shown in Figs. 4(a)–
4(c), respectively. [The labels of jumps and peaks are given
FIG. 5. Disorder averaged correlation q of a thermal state just
above the transition temperature at �0 � 1:5 to ground states at
disorder strength � for the same realization of random fields.
Solid squares for size 163 and open circles for size 323. Only a
few error bars are drawn to make the figure easy to read. The
inset shows the correlation of thermal states with ground states
of a different random field realization.
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in Figs. 1(b) and 3.] Similar correlations between ground
states and thermal states were found in one dimension [27].

Some correlation between ground states and thermal
states persists to much smaller values of �0 in a regime
where the thermodynamic properties no longer display
sharp peaks. Figures 4(g)–4(i) show the same realization
of disorder and the same plane through the system but with
�0 � 0:5. Here the specific heat has a rounded peak at T �
4:375. Figures 4(g)–4(i) correspond to temperatures 4.0,
4.3, and 4.45, respectively. Although there is considerable
thermal ‘‘blurring’’ in these pictures, evidence of the
ground state is unmistakable.

A quantitative characterization of the correlation be-
tween ground states and thermal states for the same real-
ization can be obtained from the correlation measure,

q��� �
1

L3

X

i

sgn�hsii�;0hsii�0;T� �; (2)

where the overbar is an average over realizations of dis-
order and hsii�;T is the thermal average of the spin at the ith
site at disorder � and temperature T or, if T � 0, it is the
ground state spin value. For each realization, the tempera-
ture T� � Tmax � 0:1 where Tmax is the temperature of the
maximum of the specific heat or one of the sharp peaks in
C if sharp peaks exist. Thus, for each realization, we pick a
thermal state just above the transition temperature.
Figure 5 shows q vs � for sizes 163 and 323 and �0 �
1:5, with 96 realizations for size 163 and 9 for size 323. A
peak in the correlation occurs at � 	 2:65 where q 	 0:75.
The value, � 	 2:65, is about 0.15 larger than the average
� at the largest discontinuity in the bond energy for system
size 323. The inset of Fig. 5 shows the average correlation
between thermal states of one realization and ground states
of another for size 163, which is nearly zero as expected. A
second measure q� is obtained by choosing the value �� for
each ground state realization to give the largest correlation
to the thermal state at T and then averaging over realiza-
tions. We find that, for size 323, q� � 0:80� 0:06 for
�0 � 1:5 and q� � 0:85� 0:05 for �0 � 2:0. Together,
these results provide quantitative confirmation that the
thermal states at temperatures slightly above the thermal
critical point are strongly correlated with the ground states
at disorder strength slightly higher than the zero tempera-
ture critical point.

The strong correlations between states at different tem-
peratures are ostensibly in conflict with the idea of
‘‘chaos’’ in the RFIM. Chaos in systems with quenched
disorder, such as spin glasses and the RFIM, refers to the
sensitivity of spin configurations to small perturbations
either in temperature or in quenched disorder [14,28,29].
The existence of chaos in the RFIM is controversial and is
not definitively established. This work suggests that chaos
is not present along trajectories in the �-T plane following
the critical line.

In summary, we find that sharp peaks in thermodynamic
functions resulting from the flipping large domains are
13720
typical near the critical point. In addition, spin configura-
tions near the transition are similar to the ground states
near some corresponding large jump at zero temperature. If
this connection between critical ground states and thermal
states persists to large system size, it supports a strong
version of the zero temperature fixed point scenario: the
sequence of states near the zero temperature critical point
obtained by varying � for T � 0 can be mapped onto the
sequence of thermal states near the critical point obtained
by varying T for fixed values of �0, �0 <�c.
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