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Orbital Magnetization in Periodic Insulators
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Working in the Wannier representation, we derive an expression for the orbital magnetization of a
periodic insulator. The magnetization is shown to be comprised of two contributions, an obvious one
associated with the internal circulation of bulklike Wannier functions in the interior, and an unexpected
one arising from net currents carried by Wannier functions near the surface. Each contribution can be
expressed as a bulk property in terms of Bloch functions in a gauge-invariant way. Our expression is
verified by comparing numerical tight-binding calculations for finite and periodic samples.
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Recent years have seen a surge of interest in issues of
charge and spin transport in magnetic materials and nano-
structures, notably the development of a theory of the
intrinsic anomalous Hall conductivity and some controver-
sies surrounding the spin-Hall effect [1]. In this context it is
quite surprising that the theory of orbital magnetization,
essential for any proper description of magnetism, has
remained in a primitive state. Linear-response methods
allow calculations of magnetization changes [2–5], but
not of the magnetization itself.

Hirst [6] has emphasized that a knowledge of the bulk
local current density J�r� is insufficient, even in principle,
to determine the macroscopic orbital magnetization M,
just as the density ��r� cannot be used to determine the
electric polarization P. Thus, the theory of M today is in a
condition very similar to that of P in the early 1990s, when
the problem of computing finite polarization changes was
solved by the introduction of the Berry-phase theory [7,8].
The essential difficulty, that the matrix elements of the
position operator r are not well defined in the Bloch
representation, could be overcome by reformulating the
problem in the Wannier representation. Because Wannier
functions (WFs) are exponentially localized in an insulator,
matrix elements of r between WFs are indeed well defined.

Here we show that it is possible to formulate a corre-
sponding theory of the orbital magnetization for an insu-
lator with broken time-reversal symmetry. The problem is
analogous, with the circulation operator r� v now being
ill defined in the Bloch representation. Working instead in
the Wannier representation, we write the orbital magneti-
zation as a gauge-invariant Brillouin-zone integral over
occupied Bloch functions. It contains two terms, the first
of which describes the internal circulation of bulklike WFs
[9]. The second is much more subtle, arising only from
surface WFs and reflecting the fact that the information
about surface currents needed to define the macroscopic
magnetization is actually contained in the bulk band struc-
ture. The resulting formula is consistent with a recent
semiclassical argument [10] based on an expression for
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the magnetization of a wave packet [11] and can easily be
implemented in first-principles codes.

For our derivation, we restrict ourselves to the case of an
insulator described by a one-particle Hamiltonian with
broken time-reversal symmetry. While the restriction to
insulators is essential for the theory of polarization, we
suspect that it is less so here, so that future generalizations
to metals are not ruled out. We also require a vanishing
macroscopic magnetic field (or, more generally, an integer
number of flux quanta per unit cell) so that the Bloch wave
vector k remains a good quantum number. We have in
mind cases in which a staggered magnetic field averages to
zero over the unit cell, or in which the time-reversal break-
ing comes about through spin-orbit coupling to a back-
ground of ordered local moments [12–16]. For simplicity
we work with spinless electrons (the generalization to the
spin-unrestricted case being straightforward) and further-
more restrict ourselves to zero-Chern-number insulators
[12,13].

Let us consider a finite sample representing a fragment
of a larger crystalline system. We assume that the occupied
states can be represented in terms of well-localized ortho-
normal orbitals j�ii, which we will refer to as Wannier
functions. If we introduce the velocity operator as

v � �
i
@
�r; H� (1)

then the total magnetic moment of the finite system in-
volves the matrix elements h ijr� vj ii, where the j ii
are the occupied eigenstates of H. By invariance of the
trace, this can be written in terms of WFs as

m � �
e

2c

X
i

h�ijr� vj�ii; (2)

where�e is the electron charge. The magnetization M can
then be defined as the magnetic moment m per unit vol-
ume. For large but finite samples, all j�ii that are suffi-
ciently far from the surface become exponentially similar
to bulk WFs, which we will denote as jwii. For the electric
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polarization, the transition h�ijrj�ii ! hwijrjwii de-
scribes the polarization of periodic systems correctly [7].
Thus, it is tempting to assume that the magnetization
should be expressible in a similar way in terms of the
circulation hwijr� vjwii of bulk WFs.

We set out to verify this hypothesis in the context of
numerical tight-binding calculations. For simplicity, we
chose the Haldane model [12], which is comprised of a
honeycomb lattice with two tight-binding sites per cell
with site energies �E0, real first-neighbor hoppings t1,
and complex second-neighbor hoppings t2e�i’, as shown
in Fig. 1(a). For our tests, we have chosen a lattice constant
equal to unity, E0 � �2, t1 � 1, and t2 � 1=3 and allowed
’ to vary [17]. We treat the upper band as empty and the
lower band as occupied. The corresponding WFs were
obtained by acting with the band projector on a set of �
functions located on the sites with E0 � �2 and applying a
subsequent symmetric orthonormalization.

The results of our numerical calculations for a finite
30� 30 sample are depicted as the symbols in Fig. 2.
First, we calculated the total magnetic moment according
to Eq. (2) and divided by the total sample area A to obtain
the magnetization M indicated as circles in Fig. 2. Next, we
evaluated the contribution to Eq. (2) from a single WF deep
in the bulk of the finite sample and divided by the unit-cell
area A0 to obtain a ‘‘local circulation’’ (LC) magnetization
MLC plotted as triangles in Fig. 2. We expected these two
quantities to agree with each other within some numerical
tolerance. On the contrary, the results indicate no agree-
ment whatsoever.

This surprising result forced us to reconsider our entire
line of argument, revealing a profound oversight. It is
easily shown that each bulk band of an insulating crystal
must carry no net current, even in the absence of time-
reversal symmetry. This means that each bulklike WF, such
as the one that we chose from the deep interior of the
sample, must carry no net current, as is easily confirmed
in the numerical calculation. We had assumed that the WFs
at the boundary of the finite sample would likewise carry
no net current, but this assumption is incorrect. In fact, the
WFs near the boundary do carry a net current, and the total
(a) (b)

FIG. 1. (a) Four unit cells of the Haldane model. Solid (open)
circles denote sites with E0 � �2 �	2�. Arrows indicate sign of
the phase ’ for second-neighbor hopping. (b) Net currents �evi
associated with WFs, plotted at their centers �ri, for a 10� 10
sample with ’ � �=4. Currents decrease rapidly into the bulk,
so that only surface currents are visible.
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circulation associated with these net currents provides just
the needed contribution to resolve the discrepancy.

This is illustrated in Fig. 1(b), where we have plotted the
net current �evi � �eh�ijvj�ii located at the Wannier
center �ri � h�ijrj�ii for each WF in the sample. While
confirming that the net currents in the deep interior are
exponentially small, the results reveal that the WFs near
the surface do carry a substantial current that contributes
extensively to the total magnetic moment of the sample.
Dividing by the sample area, we obtain an ‘‘itinerant
circulation’’ (IC) contribution MIC to the magnetization
that is plotted as squares in Fig. 2. A glance at the figure
suggests, and numerical tests confirm, that M � MLC 	
MIC within numerical precision [18].

It is not surprising that MLC, corresponding to the local
circulation of a bulk WF, is a bulk property of the insulator
[9]. It is far less clear whether MIC is also a bulk property.
To show that it is, we go back to Eq. (2). For simplicity, we
restrict ourselves henceforth to the case of a two-
dimensional system with a single occupied band (the gen-
eralization to three dimensions is straightforward, while
the multiband treatment is more subtle). Then Eq. (2) can
be rewritten as

M � �
e

2Ac

X
i

�
h�ij�r� �ri� � vj�ii|����������������{z����������������}

LC

	 �ri � h�ijvj�ii|����������{z����������}
IC

�
;

(3)

where again LC and IC correspond to local and itinerant
circulation contributions, respectively. We divide the finite
sample into an ‘‘interior’’ and a ‘‘surface’’ region in such a
way that the latter occupies a nonextensive fraction of the
total sample area in the thermodynamic limit. We label
WFs from the surface and interior regions as j�si and jRi,
respectively, where R is a lattice vector.

Next, we note that the WFs in the surface region make a
negligible contribution to the LC term of Eq. (3) since they
occupy a nonextensive fraction of the area in the thermo-
dynamic limit. The LC term then becomes
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FIG. 2. Numerical results for the magnetization (in Bohr mag-
netons per unit area) for the Haldane model. Symbols denote
results from a finite 30� 30 sample, while curves represent
results of a k-space calculation on a periodic system.
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MLC � �
e

2Ac

X
R

hRj�r� �rR� � vjRi

� �
e

2A0c
h0jr� vj0i: (4)

Here we have used translational symmetry and the fact that
hRjvjRi � 0 (since bulk bands carry no net current).
Equation (4) shows that MLC can be expressed simply in
terms of the bulk WF j0i in the home unit cell. Turning to
the IC term, the interior WFs now make no contribution
(again because hRjvjRi � 0) so that

MIC � �
e

2Ac

X
s

�rs � vs; (5)

where the sum runs over surface WFs only.
We now concentrate on this IC contribution and consider

a vertical strip of which one horizontal section is sketched
in Fig. 3, and choose vertical boundaries (dashed lines) to
discriminate between interior and surface regions.
Focusing on the right edge, we use labels s and s0 to label
WFs in the interior (x < x0) and surface (x > x0) regions,
respectively. The vertical macroscopic current flowing in
the right surface is

Iy � �
e

�l

X0

s0
vs0;y; (6)

where the primed sum is further limited to WFs whose
centers are inside a vertical segment of length �l, equal to
the vertical repeat unit. The current carried by the ith WF
can be written in terms of contributions from its neighbors
as

v i � �
i
@
h�ij�r; H�j�ii �

X
j

vhjii; (7)

where vhjii � �2=@� ImrijHji has the interpretation of a
current ‘‘donated from WF j to WF i.’’ Since vhjii �
�vhiji, the total current carried by any subset of WFs can
be computed as the sum of all vhjii for which i is inside and
j is outside the subset. Applying this to the piece of surface
region considered above, Eq. (6) becomes

Iy � �
e

�l

X
s

X0

s0
vhs;s0i;y: (8)

Setting the boundary deep enough below the surface to be
s 0 s’x

FIG. 3. Horizontal slice from a sample that extends indefinitely
in the vertical direction but is otherwise similar to the one in
Fig. 1. Vertical dashed lines delimit bulk and surface regions in
which WFs are labeled by s and s0, respectively.
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in a bulklike region and invoking the exponential localiza-
tion of the WFs and of derived quantities like vhjii, we can
identify j�si and j�s0 i with the corresponding bulk WFs.
Exploiting translational symmetry, vhR;R0i � vh0;R0�Ri,
Eq. (8) becomes

Iy � �
e

�l

X
Rx<x0

X0

R0x>x0

vh0;R0�Ri;y; (9)

where the sum is still restricted to a segment of height �l.
The number of terms in Eq. (9) having a given value of
R0 �R is just �R0x � Rx��l=A0 if �R0x � Rx�> 0 and zero
otherwise. With a change of summation index, Eq. (9)
becomes

Iy � �
e

2A0

X
R

Rxvh0;Ri;y; (10)

where the factor of 2 enters because the sum has been
extended to all R. For a boundary fragment of arbitrary
orientation, Eq. (10) generalizes to I� �

P
�G��n̂�, where

n̂ is the unit normal to the boundary, and

G�� � �
e
A0@

X
R

ImhRjr�j0ih0jHjRiR�: (11)

The contribution of this itinerant current to the magnetic
moment �1=2c�

H
�r� I�dl is easily seen to be related to

the antisymmetric part [19] of G, so that

MIC �
1

c
GA
xy �

1

2c
�Gyx �Gxy�: (12)

Eqs. (11) and (12) constitute our first major result, showing
that the itinerant circulation contribution to the orbital
magnetization can indeed be expressed as a bulk property
in terms of the bulk WFs alone.

In the remainder of this Letter, we show that the two
contributions MLC and MIC can both be converted into
k-space expressions that can be evaluated directly in the
Bloch representation. The WFs are defined via

jRi �
A0

�2��2
Z
d2keik
�r�R�juki; (13)

where juki � e�ik
rj ki is the cell-periodic part of the
Bloch function j ki. Inserting Eq. (1) into Eq. (4) and
using r� r � 0, it follows that

MLC �
e

2A0@c
Imh0jr�Hrj0i: (14)

Defining Hk � e�ik
rHeik
r and using that

r jRi � i
A0

�2��2
Z
d2keik
�r�R�j@kuki; (15)

Eq. (14) can be written [9] as a cross product

MLC �
e

2@c
Im

Z d2k

�2��2
h@kukj �Hkj@kuki; (16)

between three-component bra and ket states.
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In order to convert MIC to k space, we note that the
matrix elements appearing in Eq. (11) are given by

h0jrjRi �
A0

�2��2
Z
d2kAke

�ik
R; (17)

h0jHjRi �
A0

�2��2
Z
d2kEke

�ik
R; (18)

where the Berry connection Ak � ihukj@kjuki is real and
Ek is the band energy. After some algebra including an
integration by parts, we find

G�� � �
e
@

Z d2k

�2��2
Ek@k�Ak�: (19)

Inserting in Eq. (12) gives

MIC � �
e

2@c

Z d2k

�2��2
Ek�k; (20)

where �k � @k �Ak is the Berry curvature.
Interestingly, both magnetization contributions (16) and

(20) are individually gauge invariant, i.e., insensitive to the
choice of phases of the Bloch functions used to construct
the WFs. This was shown for Eq. (16) in Ref. [9], and it
follows immediately for Eq. (20) because ��k� is a gauge-
invariant quantity. Each contribution is also invariant with
respect to a shift of the zero of the Hamiltonian; the effect
of such a shift is proportional to

R
d2k�k � 2�C, where C

is the Chern number which has been assumed to vanish.
Adding MLC and MIC, placing both in a common form,

and returning to three dimensions, we find that the total
magnetization of the crystalline solid can be expressed as

M �
e

2@c
Im

Z d3k

�2��3
h@kukj � �Hk 	 Ek�j@kuki: (21)

This is our principal result. Equation (21) is consistent with
Eq. (11) of Ref. [10], thereby providing a direct, fully
quantum derivation of a result inferred there on the basis
of semiclassical arguments alone. Note that Eq. (21) differs
from the magnetization of an individual wave packet dis-
cussed in Ref. [11] in that Hk and Ek enter with the same
relative sign.

To confirm the correctness of our formulation, we used
discretized [9,21] versions of Eqs. (16) and (20) to calcu-
lateMLC,MIC, andM for the Haldane model using a 300�
300 k-point mesh. The results, drawn as the lines in Fig. 2,
are entirely consistent with the results for finite samples.
We also carried out numerical tests which confirmed that
the extrapolation of the results from N � N finite samples
for N � 10, 20, and 30 to N ! 1 shows very precise
agreement with the k-space calculation on a dense mesh.
We can thus be confident that the formal derivations are
correct and that there is no longer any possibility that terms
in the magnetization are being overlooked. We have car-
ried out similar tests for other tight-binding models with
reduced symmetry [18], with similar results.
13720
In conclusion, we have derived a formula for the orbital
magnetization of a crystalline system by working in the
Wannier representation, and we have demonstrated its
correctness via numerical tests. While limited to the case
of a noninteracting zero-Chern-number insulator in a van-
ishing (or commensurate) magnetic field, our result none-
theless represents significant progress towards a more
general theory of orbital magnetization. The resulting for-
mula is easily evaluated in the context of a k-space
electronic-structure code. The generalization to the multi-
band case will be discussed in a forthcoming publication. It
remains tantalizingly uncertain whether such a Wannier-
based approach can also be generalized to handle insula-
tors with nonzero Chern numbers, metals, or arbitrary
magnetic fields.
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