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We use exact sum rules for the one-particle spectral function to quantify the idea that it is more difficult
to add an electron than to extract one in a system with strong local repulsion. Our results explain the
striking asymmetry in the tunneling spectra of underdoped cuprates which increases with underdoping.
We also propose a novel method, based on ratios of sum rules, to estimate local density variations in
inhomogeneous materials. Using a variational approach, we show that the origin of the particle-hole
asymmetry lies in the incoherent spectral weight.
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With the discovery of high temperature superconductiv-
ity in the cuprates there has been enormous interest in
doped Mott insulators. One-particle spectroscopies like
angle resolved photoemission (ARPES) [1,2] and scanning
tunneling microscopy (STM) [3,4] have played a major
role in our understanding of these strongly correlated
materials. In this Letter we examine in detail sum rule
constraints on the single-electron spectral function, focus-
ing, in particular, on the striking asymmetry between occu-
pied and unoccupied spectral weights and its doping
dependence in lightly doped Mott insulators. This is in
marked contrast with conventional metals and supercon-
ductors which exhibit particle-hole (p-h) symmetry on low-
energy scales (tens of meV). Anderson [5] has recently
suggested that p-h asymmetry in cuprates may be a char-
acteristic signature of ‘‘projection’’ into a low-energy sub-
space where strong local Coulomb repulsion makes double
occupancy at a site energetically prohibitive.

In this Letter, we make the above idea precise and obtain
the following three sets of results. (1) First, we use sum
rules for the electron removal (or occupied) and electron
injection (or unoccupied) spectral weights in the low-
energy subspace. We show that for the energy-integrated
local density of states (LDOS) there is much more weight
on the negative bias (occupied) side than on the positive
bias (unoccupied) side, and that this asymmetry grows with
underdoping. These results quantify the large asymmetry
observed in tunneling [6]. We emphasize that these results
and the ones described below in (2) are very general,
assuming only that the local Coulomb repulsion is the
largest energy scale, but otherwise independent of the de-
tails of the Hamiltonian and of the nature of the ground
state and low-lying excitations. (2) Next, we exploit sum
rules to propose a novel way of estimating local charge
density variations in inhomogeneous materials from STM
data. This is the only known way (that we are aware of) to
extract such information. By taking a ratio of local sum
rules we eliminate the effect of unknown, spatially varying
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STM matrix elements, and find
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where g�r;! � eV� is the local tunneling conductance and
x�r� the local hole concentration at location r. �L is a
cutoff (of order 1 eV in the cuprates) and the omitted terms
on the right-hand side represent an order 10% correction,
both of which are discussed in detail below. The ratio on
the left-hand side can be estimated from STM data [7], and
the above equation can be solved to determine x�r�.
(3) Finally, we gain further insight into the origin of the
p-h asymmetry by decomposing the spectral function into
its coherent (quasiparticle) and incoherent pieces for trans-
lationally invariant states. For the d-wave superconducting
state obtained upon doping a Mott insulator [8–10], we
explicitly compute the coherent spectral weight using a
variational approach for the ground state and low-lying
quasiparticle (QP) excitations [10,11]. We thus obtain
sum rules for the incoherent spectral weight and find that
it dominates the p-h asymmetry. We also find the unex-
pected result that the incoherent part of the spectral func-
tion Ainc�k; 0 � ! � �L� is much smaller than the
coherent part in this energy range. This is a testable pre-
diction for inverse-photoemission experiments.

Sum rules and asymmetry of local DOS.—We consider a
system of electrons described by the Hamiltonian H �
K �U

P
ini"ni#, where the kinetic energy K describes an

arbitrary tight binding dispersion with terms of order t
(nearest neighbor hopping). We can also add toH a random
one-body potential as well as longer range Coulomb inter-
actions. We will always work in the limit where the local
Coulomb repulsion U is much larger than all other energy
scales.

The one-electron spectral function A�r; r0;!� �
� ImG�r; r0;!� i0��=�, where G is the Green’s func-
tion. We work in real space for two reasons: first, the no-
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double-occupancy constraint is best written in this basis,
and second, this allows us to describe spatially inhomoge-
neous states of lightly doped Mott insulators. We use the
T � 0 spectral representation [12]

A�r; r0;!� �
X
m

�h0jcyr0�jmihmjcr�j0i��!� Em � E0��

�
X
m

�h0jcr�jmihmjc
y
r0�j0i��!� Em � E0��;

(2)

where jmi’s are exact many-body eigenstates with energy
Em with m � 0 the ground state, and ! is measured with
respect to the chemical potential.

The large U suppresses double occupancy at each
site, and its effects on the ground state and low-
lying excitations are best described using the
projection operator P �

Q
r�1� nr"nr#�. We then make

the well-known unitary transformation [13] exp��iS�,
such that exp�iS�H exp��iS� has no matrix elements
connecting states which differ in their double occupancy
to any given order in t=U. To leading order
iS� ��1=U�

P
r;r0;�trr0 �nr ��c

y
r�cr0�hr0 ��� h:c:� �O�t=U�2,

where hr� � 1� nr;� and � � ��. It is useful to incor-
porate this unitary transformation on the states, which is
equivalent to transforming all operators. It then follows
that all the low-energy states, i.e., those in the so-called
‘‘lower Hubbard band’’ (LHB), are of the form
exp��iS�P j�mi where j�mi’s are unprojected states.
This characterization of LHB states will be crucial below.

We now derive various exact sum rules without making
any assumptions about the ground state or low-lying ex-
citations. For translationally invariant systems these sum
rules have been studied earlier [14,15]. However, the re-
sults are much more general and are particularly useful
when applied to a local probe (STM) of spatially inhomo-
geneous states, as emphasized below.R

�1
�1 d!A�r; r

0;!� � 1 follows trivially from Eq. (2),
while the ‘‘occupied’’ spectral weight [16]

Z 0

�1
d!A�r; r0;!� � h0jcyr0�cr�j0i: (3)

The LDOS N�r;!� � 2A�r; r;!� (with the two coming
from spin) is then given by

Z 0

�1
d!N�r;!� � n�r� � 1� x�r�: (4)

Here n�r� is the local electron density and x�r� the local
hole doping. This result simply says that there are �1� x�
occupied sites (per unit volume) from which one can
remove an electron. For a translationally invariant system,
we can Fourier transform (3) from �r� r0� to k and obtain
the well-known result

R
0
�1 d!A�k; !� � n�k� which has

proved useful in analyzing ARPES data [17].
Next we turn to sum rule constraints on electron addi-

tion, probed experimentally by tunneling with a positive
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bias or by inverse photoemission. It is trivial to derive sum
rules for energy integration from 0 to1 by subtracting the
occupied spectral weights (3) or (4) from the total spectral
weight of unity. But a much more useful result is obtained
by focusing only on the low-energy states in the ‘‘lower
Hubbard band’’ (LHB) by integrating over 0 � ! � �L,
where the upper cutoff �L satisfies t	 �L 	 U. This is
implemented by restricting the sum over intermediate
states in (2) to LHB states jmi � exp��iS�Pj�mi, as dis-
cussed above.

We thus get
R�L

0 d!A�r;r0;!� �
P
mh�0jP ~cr�P j�mi


h�mjP ~cyr0�P j�0i. Here we found it convenient to use the
transformed operator ~cr� � exp�iS�cr� exp��iS�. We now
use

P
mj�mih�mj � 1 for unprojected states j�mi’s, to

obtain

Z �L

0
d!A�r; r0;!� � h�0jP ~cr�P ~cyr0�P j�0i: (5)

We next calculate P ~cyP to order t=U, and find P ~cyr�P �
hr ��c

y
r�P �

1
U

P
R;�0trRhR ��0c

y
R�0cr�0nr ��c

y
r�P .

We thus obtain the low-energy sum rule:

Z �L

0
d!N�r;!� � 2x�r� � 2jhK�r�ij=U; (6)

where hK�r�i � h�0jP
P

R;�tRr�c
y
R�cr� � h:c:�P j�0i.

The first term in (6) simply says that one can inject an
electron into any of the x empty sites, with the two for spin
degeneracy. The second term gives an order �xt=U� cor-
rection since the injected electron can create a temporary
double occupancy and then hop off to a neighboring empty
site. We note that, in contrast to this, the corresponding
result (4) to extract an electron is exact to all orders in t=U.

We note that the above result for a translationally in-
variant system

P
k
R�L

0 d!A�k; !� � x� jhKij=U was de-
rived earlier in Refs. [14,15]. We next derive another
simple result for the translationally invariant case which
we will need later on. First we simplify the right-hand side
of (5) using the lowest order expressions for P ~cyP and
P ~cP . A straightforward calculation then shows thatR�L

0 d!A�r; r0;!� � �1� x��r;r0=2� hcyr0�cr�i �

O�t=U�. Fourier transforming to k space and using stan-
dard expressions of n�k�, we find that the total low-energy
spectral weight is

Z �L

�1
d!A�k; !� � �1� x�=2�O�t=U� (7)

for each k. Note that the deficit from unity comes from
weight in the ‘‘upper Hubbard band’’ above �L.

Coherent and incoherent spectral weights.—We next
decompose the spectral function into its coherent and
incoherent pieces and determine their doping dependences.
Toward this end we focus on translationally invariant sys-
tems and use a variational approach. We take the (varia-
tional) ground state to be a projected d-wave BCS state
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j0i � exp�iS�P jdBCSi which has given much insight into
the phenomenology of the superconducting state of the
high Tc cuprates [8,9]. Further the (variational) quasipar-
ticle excitations [11] above this ground state are described
by jk�i � exp�iS�P�yk�jdBCSi, where �y is the standard
Bogoliubov QP operator. The QP’s lead to the coherent
part of A�k; !�, i.e., delta functions in ! at T � 0, and the
relevant matrix elements in Eq. (2) are calculated using the
Gutzwiller approximation (GA) [10,11]. Our use of the GA
to calculate matrix elements goes beyond previous appli-
cations of this approach, which have been by and large
restricted to ground state expectation values [18] [see,
however, the work of Laughlin [19] where a closely related
approximation scheme is used].

We thus obtain [20]

A�k; !� � Z�k�u2
k��!� Ek� � Z�k�v2

k��!� Ek�

� Ainc�k; !�; (8)

where uk, vk, and Ek is standard BCS notation [21]. The
first two terms in (8) represent the coherent Bogoliubov QP
pieces with reduced spectral weight

Z�k� �
2x

1� x
�

8x

U�1� x�2
X
k0
�k0v2

k0 �
4x

U�1� x�
�k

X
k0
v2

k0 ;

(9)

where �k � 2t�coskx � cosky� � � � � is the (negative of
the) dispersion corresponding to the bare kinetic energy
K in the Hamiltonian. We note that, as emphasized in [9], Z
vanishes as one goes to the insulating state at x � 0, and, in
fact, the GA result (9) is in excellent quantitative agree-
ment with the variational Monte Carlo results of Ref. [9].
The sum over all states other than single QP’s in (2) leads
to the incoherent part of the spectral function denoted by
Ainc�k;!�. Although we cannot calculate its explicit form
with the minimal set of assumptions we have made, its
existence is necessarily demanded by exact sum rules, as
shown below, which also put constraints on Ainc.

A nontrivial consistency check of our results is provided
by n�k� calculated within GA, which involves only an
equal-time ground state correlation and does not depend
on any assumptions about QP excited states. We find
n�k� � Z�k�v2

k � nsmooth�k� where nsmooth�k� �
�1� x�2=�2�1� x�� �O�t=U� is a smooth function of k
in the entire Brillouin zone. We omit the details of the
�t=U� corrections which involve rather long expressions
[20]. We note that n�k� implies that there is a jump
discontinuity along the zone diagonal whose magnitude
is given precisely by (9) including the �t=U� corrections.

We now turn to sum rule constraints on Ainc restricting
ourselves, for the most part, to leading order results in t=U;
the next order corrections will be presented elsewhere [20].
We begin by integrating (8) from �1 to 0 and comparing
with the GA result for n�k�. We obtain
13700
Z 0

�1
d!Ainc�k; !� �

�1� x�2

2�1� x�
�O�t=U�; (10)

which implies that for each k there is nonzero incoherent
spectral weight for !< 0 whose strength, relative to the
coherent weight Z�k�v2

k on the occupied side, increases
with underdoping (decreasing x).

To find the incoherent spectral weight on the unoccupied
side we substitute the GA spectral function (8) in the total
low-energy spectral weight sum rule (7), leading toR�L
�1 d!Ainc�k; !� � �1� x�2=�2�1� x�� �O�t=U� for

each k. This together with (10) implies thatR�L
0 d!Ainc�k; !� � O�xt=U�. Given the non-negativity

of spectral weight, we find that

Ainc�k; 0 � ! � �L� � O�xt=U�: (11)

The vanishing of Ainc for !> 0 to zeroth order in �t=U� is
at first sight quite surprising. Although there is very little
spectral weight (of order x) for !> 0, as seen from (6), it
is dominated by the coherent piece when U� t.

To gain more insight into this striking result we derive it
in a completely different fashion, which also shows that it
is not an artifact of the Gutzwiller approximation. To
zeroth order in �t=U� we can set exp�iS� � 1, and using
the identity Pcyr;�P � Pcyr;�, we find that Pcyk;�j0i �
Pcyk;�jdBCSi � const
 P�yk;�jdBCSi � const
 jk; �i.
We thus find that the projected creation operator acting on
the ground state gives precisely the coherent QP state. Thus
there is no incoherent weight in the electron creation sector
to zeroth order in �t=U�.

Finally, one can ask why one does not generate signifi-
cant incoherent spectral weight through spin rearrange-
ments as one adds an electron to the system. Since such
processes involve the superexchange scale J t2=U, their
contribution to the spectral weight would be of order xJ=t
which is formally of order xt=U, as obtained above.

We can also determine the explicit form of the O�t=U�
incoherent unoccupied spectral weight, which follows
from the results described in the paragraph below
Eq. (6), together with the GA result [20] for n�k�. We find

X
k

Z �L

0
d!Ainc�k; !� �

2x�1� x�
U�1� x�

X
k

�kv2
k: (12)

However, in a k-integrated probe like tunneling it would be
hard to separate out the coherent and incoherent contribu-
tions, unlike in ARPES where this is possible.

Implications for experiments.—We first discuss the im-
plications of our results for tunneling spectroscopy. The
tunneling conductance in STM experiments is proportional
to the local density of states g�r; eV� � C�r�N�r;! � eV�
where the C�r� involves r-dependent tunneling matrix
elements. Thus our result (6) shows that the (energy-
integrated) positive bias conductance is small, of order x,
while (4) implies that the (integrated) negative bias con-
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ductance is large, of order unity. This provides a qualitative
explanation for the large asymmetry seen in STM experi-
ments which show a superconducting gap structure super-
imposed on a sloping ‘‘background’’ which decreases
going from negative to positive bias. Our results predict
how this asymmetry should grow with underdoping (de-
creasing x). This asymmetry is most strikingly seen in the
highly underdoped nonsuperconducting cuprates such as
NaxCa1�xCuO2Cl2 studied by Hanaguri et al. [6]. The
nature of the ‘‘zero temperature pseudogap state’’ in such
materials is an unsolved problem, and in this context it is
very important to reemphasize that our results (4) and (6)
make no assumptions about the broken symmetry in the
ground state or the nature of low-lying excitations.

To get quantitative information from STM data, we look
at ratios in which the unknown tunneling matrix elements
cancel out. Taking the ratio of the total unoccupied low-
energy spectral weight (6) to the total occupied spectral
weight (4) at the same location r, we obtain

R�L
0 d!g�r;!�R
0
�1 d!g�r;!�

�
2x�r�

�1� x�r��
�

2jhK�r�ij
U�1� x�r��

: (13)

The left-hand side can now be estimated from STM data,
provided one can make a reasonable choice of the positive
and negative high energy cutoffs [22], and then used to
infer the local hole doping x�r� from the first term on the
right-hand side of (13). The second term of order �xt=U�
gives an estimate of the order 10% error made in estimating
x.

In the second part of the Letter we derived results for the
doping dependence of the coherent and incoherent parts of
the spectral function. The predicted x dependence of the
coherent weight Z of Eq. (9) has already been observed in
ARPES studies of nodal QP’s [see Ref. [9] ]. The important
prediction for the very small incoherent spectral weight on
the unoccupied side (11) and (12) should be testable in
future inverse-photoemission experiments with improved
energy resolution.
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