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Nondissipative Spin Hall Effect via Quantized Edge Transport
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The spin Hall effect in a two-dimensional electron system on honeycomb lattice with both intrinsic and
Rashba spin-orbit couplings is studied numerically. Integer quantized spin Hall conductance is obtained at
the zero Rashba coupling limit when electron Fermi energy lies in the energy gap created by the intrinsic
spin-orbit coupling, in agreement with recent theoretical prediction. While nonzero Rashba coupling
destroys electron spin conservation, the spin Hall conductance is found to remain near the quantized value,
being insensitive to disorder scattering, until the energy gap collapses with increasing the Rashba
coupling. We further show that the charge transport through counterpropagating spin-polarized edge
channels is well quantized, which is associated with a topological invariant of the system.

DOI: 10.1103/PhysRevLett.95.136602 PACS numbers: 72.10.2d, 71.70.Ej, 72.25.2b, 73.43.Cd
The proposals of intrinsic spin Hall effect (SHE) in a
Luttinger spin-orbit (SO) coupled three-dimensional
p-doped semiconductor [1] and in a Rashba SO coupled
two-dimensional electron system (2DES) [2] have stimu-
lated many subsequent research activities [3–18]. The SHE
may potentially provide a purely electrical means to ma-
nipulate electron spins without use of ferromagnetic mate-
rials or a magnetic field. The SHE in these systems is
dissipative because of nonzero longitudinal conductance
[9] and exhibits nonuniversal behavior in the presence of
disorder [5,6,10–17], which is naturally distinct from the
conventional integer quantum Hall effect (IQHE). In par-
ticular, it is found [5,6,16] that the bulk SHE in the two-
dimensional Rashba model may be destroyed by any weak
disorder in infinite samples. It is of both fundamental and
practical interest to search for nondissipative SHE with
universal properties similar to the IQHE, in light of the fact
that IQHE can exist in nature in the absence of magnetic
field, as first predicted by Haldane [19].

A class of band insulators with SO coupling was sug-
gested as possible candidates for nondissipative SHE [9].
Interestingly, Kane and Mele proposed [20] that the intrin-
sic SO coupling in single-layer graphene films may give
rise to an integer quantized SHE (IQSHE). The intrinsic
SO coupling conserves electron spin sz. The independent
subsystems of two spin directions � �" and # are each
equivalent to Haldene’s spinless IQHE model [19] on
honeycomb lattice without magnetic field. They contribute
quantized Hall conductances e2=h and �e2=h, respec-
tively, when the electron Fermi energy lies inside the
energy gap created by the SO coupling. While the charge
Hall conductances cancel out, the total spin Hall conduc-
tance (SHC) is quantized to �sH � 2 in units of e=4�. We
recall that each subsystem can be classified by an integer
Chern number [19], which equals the Hall conductance of
the subsystem in units of e2=h, and is conserved without
spin-mixing interactions. Upon coupling the two subsys-
tems, only the total Chern number (as a well-known topo-
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logical invariant) is conserved, which is trivially zero as the
total Hall conductance vanishes. Therefore, the conserva-
tion of electron sz appears to be important to the IQSHE. It
is unclear whether the topological SHE could survive if
electron sz conservation is destroyed, e.g., by the Rashba
SO coupling, which usually exists in a 2DES due to
asymmetry in the confining potential. Furthermore, dis-
order effect in the class of insulating SHE systems has
not been studied so far. It is highly desirable to investigate
these important issues.

In this Letter, the SHE in the 2D honeycomb lattice
model including the intrinsic and Rashba SO couplings is
studied numerically. By using the multiprobe Landauer-
Büttiker formula, we show that the SHC remains nearly
quantized in the presence of finite Rashba coupling and
disorder scattering until the energy gap collapses. We
further show that the charge transport through spin-
polarized edge channels is well quantized even for non-
zero Rashba coupling, which accounts for the robustness of
the SHE. The SHC in samples with close-boundary con-
ditions is also calculated by using the Kubo formula,
whereby the SHE is shown to be a stable bulk effect instead
of a boundary effect. Our work provides the first numerical
demonstration of robust nondissipative SHE in a spin non-
conservative 2DES in the presence of disorder. The non-
trivial topological origin of this nondissipative transport
regime is also discussed.

The Hamiltonian for a 2DES on a honeycomb lattice can
be written as [19–21]
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i#� are electron creation operators, and �

are the Pauli matrices. The first term is the usual nearest
neighbor hopping term. The second term is the intrinsic SO
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coupling allowed by the symmetries of the honeycomb
lattice [19–21] with i and j as two next nearest neighbor
sites, where k is the only common nearest neighbor of i and
j, and dik is a vector pointing from k to i. The third term is
the Rashba SO coupling with êz a unit vector in the z
direction. The last term describes nonmagnetic disorder,
where �i is a random on-site potential uniformly distrib-
uted in the interval ��W=2; W=2	. The distance between
nearest neighbor sites is taken to be unity. We mention that
honeycomb lattice may be realized in other microstructures
as well as in single-layer graphene films [22]. For example,
in a triangular antidot lattice created at a semiconductor
heterointerface by using artificial periodic repulsive poten-
tials, the electrons can be restricted into the region of a
honeycomb sublattice [23]. If we switch off the Rashba
coupling by setting VR � 0, Eq. (1) reduces to a two-
component Haldane’s model [19], which is expected to
display �sH � 2 IQSHE [20].

We consider a four-probe spin Hall setup as illustrated in
Fig. 1, where a rectangular honeycomb lattice sample is
connected with four ideal semi-infinite leads. The actual
system used in our calculations will have the same aspect
ratios as Fig. 1 with enlarged sizes. To specify the system
size, the sample is divided into Ly horizontal chains with
Lx sites in each chain, as indicated by the dotted lines in
Fig. 1. The total number of sites in the sample is denoted as
N � Lx � Ly. For simplicity, the leads are assumed to
have a square lattice structure with only nearest neighbor
hopping t. The spin currents are well defined in the leads,
where no SO interactions exist. The SHC is given by twice
the ratio of the spin current in lead 3 to the voltage drop V
between leads 0 and 1. Here, a factor 2 is used to properly
eliminate the effect of the contact resistances between the
leads and the edge channels in the four-probe setup [20].
The linear SHC is calculated exactly by using the multi-
probe Landauer-Büttiker formula [12–14,24]
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FIG. 1. The four-probe spin Hall bar setup used for calculating
the SHC. Solid circles represent the sites in the sample, and open
circles stand for the sites in the leads. Ul is the electrical voltage
in lead l.
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where T��
0

ll0 is the spin-resolved electron transmission co-
efficient from spin �0 channels in lead l0 to spin � channels
in lead l at the Fermi energy E.

In Fig. 2(a), we show the electron density of states
(DOS) calculated in the momentum space for a large clean
bulk sample. The SHE within the energy gap is our main
area of interest. For a sample at half filling, such as an
undoped graphene film, the presence of weak disorder can
pin the electron Fermi energy inside the gap. We note that
the actual electron DOS of the sample in the four-probe
setup may be slightly modified from that shown in Fig. 2(a)
because of the connection with the leads. In Fig. 2(b), the
calculated SHC is shown as a function of electron Fermi
energy E for sample size N � 129� 64 and several differ-
ent strengths of the Rashba coupling VR. At VR � 0, the
energy gap in the DOS for a clean bulk sample is between
�0:52t to 0:52t. As expected, the SHC in Fig. 2(b) is well
quantized to integer 2 in the main region of the gap. As VR

increases to 0:1t, the gap shrinks to �0:23t to 0:51t. The
SHC within the gap deviates from the quantized value
slightly, showing very small fluctuations with E, in contrast
to the strong fluctuations outside the gap. The same feature
is observed for VR � 0:2t and 0:3t.

The effect of disorder is studied by fixing electron Fermi
energy at E � 0:4t. For VR < 0:3t considered below, E �
0:4t is always inside the energy gap of a pure bulk system.
The SHC calculated for three different VR are plotted in
Figs. 3(a)–3(c), respectively, as functions ofW. The results
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FIG. 2. (a) The curves with solid areas are electron DOS
(bottom axis) in a clean bulk sample versus electron energy
(left axis) for four different Rashba coupling strengths VR. The
dashed lines represent the two edges of the energy gap as func-
tions of the Rashba coupling strength VR (top axis). (b) Four-
probe SHC versus electron Fermi energy for some VR calculated
on a N � 129� 64 sample. For both (a) and (b), W � 0 and
VSO � 0:1t.
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for three different sample sizes (N � 65� 32, 97� 48,
and 129� 64) are shown together for comparison. In
Figs. 3(d)–3(f), the corresponding total transmission co-
efficient T30 �

P
��0T

��0
30 is plotted. All Tll0 for neighbor-

ing leads l and l0 are equal after disorder average by
symmetry. They characterize the charge transport between
the leads.

Let us first consider the case of zero Rashba coupling
VR � 0, where the SHC is integer quantized at zero dis-
order. According to Fig. 3(a), the IQSHE persists for a
range of disorder strength 0 
 W & 1:2t. In the same
range, T30 in Fig. 3(d) is also quantized to 1. This is not
surprising because at VR � 0 the subsystems of the two
spin directions are two decoupled IQHE systems. Our
result is consistent with electron transport through fully
spin-polarized edge channels with spin-dependent chi-
rality. In the IQSHE regime, our calculation yields T""30 �

T""13 � T""21 � T""02 � 1, representing a left-moving edge
mode in the � �" subsystem, and T##03 � T##31 � T##12 �

T##20 � 1, corresponding to a right-moving edge mode in
the � �# subsystem. All the other spin-resolved transmis-
sion coefficients vanish. Strong disorder W * 1:2t de-
stroys the quantizations of the SHC and transmission
coefficients. On the strong disorder side, T30 increases
rather than decreases with increasing W, which signals
the collapse of the bulk mobility gap. It is verified but
not shown here that, with further increasing W, all the
transmission coefficients eventually decrease to zero be-
cause of electron localization.

Next we look at how the SHC and charge transport
evolve with disorder at nonzero Rashba coupling. Remark-
ably, we see from Figs. 3(e) and 3(f) that T30 is still well
quantized within a relatively small range of W, indicating
that the edge modes remain robust. T30�� T13 � T21 �
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FIG. 3. Four-probe SHC �sH and total transmission coefficient
T30 for VSO � 0:1t, E � 0:4t, and three different sample sizes.
(a) to (c) �sH versus disorder strength W for VR � 0, 0:1t, and
0:2t, respectively. (d) to (f) corresponding total transmission
coefficient T30 from lead 0 to lead 3 versus W. Here, disorder
average is performed over 1000 random configurations.
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T02� � 1 relates to the left-moving mode, and T03�� T31 �
T12 � T20� � 1 relates to the right-moving mode. How-
ever, the spin-resolved transmission coefficients are no
longer quantized. For example, at VR � 0:2t, W � 0:5t,
and N � 129� 64, we have T""30 � 0:960, T"#30 � 0:028,
T##30 � 0:000, and T#"30 � 0:012, suggesting that the edge
modes become partially spin polarized. Nonetheless, as
long as the charge transport is quantized, the SHC stays
near the quantized value (�sH � 1:95 for the above pa-
rameters), and is robust as it is insensitive to disorder W
and independent of sample size N, as seen from Figs. 3(b)
and 3(c). With further increasing W, T30 deviates from the
quantized value, and the SHC also decreases rapidly, the
system undergoing a transition to a dissipative transport
regime.

We have observed that in the presence of not too strong
Rashba coupling and disorder, the SHE remains robust and
nearly integer quantized. Similar to the IQHE, while the
effective current-carrying states are edge states in open-
boundary systems, the nearly quantized SHE is essentially
a stable bulk effect insensitive to boundary conditions or a
local Hamiltonian at the boundary. It is of interest to
demonstrate this point directly, especially in view of the
sensitivity to boundary conditions of the SHE in other
metallic models [12–14,17]. We consider a rectangular
sample without leads. Periodic boundary conditions are
imposed in both the x and y directions. This close-
boundary system has translational invariance in the ab-
sence of disorder. The Kubo formula [2] is conveniently
used to calculate the SHC �sH by exact diagonalization of
the system Hamiltonian [16]. Standard spin current opera-
tor [2] Jzys � �szvy � vysz�=2 is adopted, where vy is the
electron velocity operator in the y direction.

In Fig. 4, the dashed line is the calculated �sH for the
ideal case of zero disorder W � 0 and Rashba coupling
VR � 0 for system size N � 64� 64. �sH is well quan-
tized to 2 in units of e=4� within the energy gap (� 0:52t
to 0:52t). The lines with symbols are�sH at nonzeroW � t
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FIG. 4. SHC calculated from the Kubo formula as a function of
electron Fermi energy E for VSO � 0:1t. The dashed line is �sH
in a clean sample �W � 0� with VR � 0 and N � 64� 64. The
lines with symbols are �sH at W � t and VR � 0:1t for four
different sample sizes. Here, �sH is averaged over 200 disorder
configurations for N � 64� 64 and 1000 disorder configura-
tions for the smaller samples.
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and VR � 0:1t for four different sample sizes from N �
24� 24 to 64� 64. In comparison with the ideal case, the
SHC in the gap (�0:23t to 0:51t for a pure sample) is not
well quantized because of nonzero VR. However, the SHC
is very close to the quantized value even in the presence of
disorder W � t. The four lines collapse in the middle
region, an indication that the nearly quantized SHC does
not change with increasing sample size, and is thus ex-
pected to persist in the thermodynamic limit. We have seen
that the SHC in this close-boundary system behaves simi-
larly to that in the four-probe setup, provided that the
electron Fermi energy lies inside the energy gap. A non-
essential discrepancy is observed that the nearly quantized
SHC at VR > 0 for the former system is a little greater
than 2 (�sH � 2:07 in Fig. 4), and that for the latter system
is smaller than 2. We believe that this discrepancy is caused
by the definition of bulk spin current Jzys, which is not
conservative [6] and hence is not completely equivalent
to the spin current measured in leads.

The robust SHE and the quantized charge transfer
through edge channels are associated with the nontrivial
topological properties of the honeycomb lattice model
with SO couplings. In the absence of the Rashba coupling,
we have two decoupled subsystems of spin � �" and # ,
and each exhibits an integer quantized Hall conduc-
tance, e2=h and �e2=h. Each subsystem can be classi-
fied by an integer Chern number, with C" � �C# � 1. In
an open system, there will be two decoupled chiral edge
modes moving in opposite directions along the bound-
ary. This picture is substantially altered by the Rashba
coupling when the mirror-plane symmetry is destroyed.
There are no longer two ‘‘types’’ of electrons due to the
spin-mixing effect of the Rashba term. However, while the
total Chern number vanishes, the opposite nonzero Chern
numbers in the coupled system cannot annihilate each
other, as a consequence of ‘‘parity anomaly’’ in the de-
coupled limit [19]. They coexist and lead to a new topo-
logical invariant, which manifests as a pair of edge modes
with partial spin polarizations, as indicated by the numeri-
cal results. These edge modes are robust in the presence of
disorder, until the energy gap collapses, where the low-
energy states merge with their high-energy parity partners
[19]. It is worth stressing that the SHC itself is not a
topological invariant, which decreases continuously with
increasing the strength of the Rashba coupling as the edge
states become less spin-polarized. A mathematical descrip-
tion of the new topological invariant will be reported
elsewhere.
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Note added.—Recently, we found it interesting to notice
that in a couple of recent preprints [25], different models
for IQSHE are proposed and studied for pure systems. Our
Letter represents the first numerical work on the charac-
terization of the SHE in this class of models in the presence
of random disorder and coupling between different topo-
logical subsystems.
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