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All-Electron Exact Exchange Treatment of Semiconductors: Effect of Core-Valence Interaction
on Band-Gap and d-Band Position
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We present the first all-electron full-potential exact exchange (EXX) Kohn-Sham density functional
calculations on a range of semiconductors and insulators (Ge, GaAs, CdS, Si, ZnS, C, BN, Ne, Ar, Kr, and
Xe). We remove one of the main computational obstacles of such calculations by the use of a highly
efficient basis for inversion of the response function. We find that the band gaps are not as close to
experiment as those obtained from previous pseudopotential EXX calculations. The locations of d bands,
determined using the full-potential EXX method, are in excellent agreement with experiment, irrespective
of whether these are core, semicore, or valence states. We conclude that the inclusion of the core-valence
interaction is necessary for accurate determination of EXX Kohn-Sham band structures and that EXX
alone is not a complete answer to the band-gap problem in semiconductors.
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The exact treatment of exchange within the Kohn-Sham
(KS) formulation of density functional theory (DFT) has
been one of the most interesting developments of ab initio
theory in recent years [1–7]. It has, however, led to a
number of outstanding unresolved issues. One of the
most striking examples concerns the band gaps and posi-
tions in semiconductors and insulators. As is well known,
these properties constitute one of the classic failures of the
local density approximation (LDA) to KS-DFT. The self-
interaction of the LDA potential and the lack of a disconti-
nuity in the exchange potential lead to both wrong band
positions and too small (or absent) gaps. The fundamental
gap is defined as the difference of ionization energy and
electron affinity. This can be written in terms of ground-
state energies of systems with different numbers of elec-
trons, and so in principle is a ground-state property and
may be calculated within KS-DFT.

It is expected that exact exchange (EXX) should im-
prove the KS band gaps as it is identically self-interaction–
free. Indeed, for the sp semiconductors the KS band gaps,
and many other properties, were found to be in excellent
agreement with experiment [3,8]. In KS-DFT the funda-
mental gap may be expressed as Eg � EKS

g � �xc, where
�xc is the discontinuity in the exchange-correlation poten-
tial. In fact, Städele et al. [3] also determined the disconti-
nuities in the exchange potential for Si, Ge, and GaAs, and
found them to be about 3–5 times the band gap, leading to
speculations that there may be a vast cancellation between
�c and �x. However, this was then followed by calcula-
tions of the KS gaps in wide band noble gas solids, where
the agreement with experiment was found to be rather poor
[5]. Thus it seems that EXX works extremely well for one
class of materials but is much less effective for others.

A further problem is the d-band positions. Although the
misplacement of the d states due to self-interaction is one
of the major reasons for the LDA gap underestimation, it
was found that the d-band positions in EXX are wrong
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even when there is an improvement in the gap [9]. This
contradicts with self-interaction corrected LDA calcula-
tions [10–12], where the d-band positions are improved
by the removal of self-interaction in the LDA.

All these EXX calculations have been performed within
the pseudopotential approach. There do exist all-electron
EXX studies on the band gaps in C, Si, and Ge [4] which,
interestingly, give worse results than the corresponding
pseudopotentials (PP) ones. However, this work has been
done within the atomic sphere approximation (ASA);
hence it is not clear what effect this simplification of the
potential has.

Thus the natural question that arises is how the basis for
the KS wave function affects the performance of EXX. It is
interesting to note that an analogous discussion is going on
regarding the GW method: it was found that the quasipar-
ticle spectra gave better gaps in the PP method if one
performed one iteration only, even though full self-
consistency is essential for charge conservation [13–15].
On the other hand, the GW method within an all-electron
full-potential approach required full self-consistency to
produce gaps in agreement with experiment. The success
of the ‘‘one shot’’ GW within the PP approach was shown
to be due to a cancellation of errors [16]: These errors arise,
on the one hand, from the approximate treatment of the
core-valence interaction and, on the other hand, from a
non-self-consistent treatment.

It is thus urgently needed to perform all-electron full-
potential EXX calculations to clarify the physics of EXX.
Unfortunately, the EXX has not, until now, been imple-
mented in an all-electron full-potential treatment due to the
formidable numerical difficulties involved. These are asso-
ciated with the need to invert the response, which for the
complex basis needed in an all-electron full-potential
method, is a large matrix. In this Letter, we present a
formulation of the EXX method that solves these numeri-
cal problems and, by deployment of this method on a wide
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range of semiconductors and insulators, resolve the outstanding issues.
We have implemented the EXX potential using the all-electron full-potential linearized augmented-plane wave (FP-

LAPW) method [17] within the EXCITING code [18]. The starting point for these calculations is the exchange energy
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and i and j run over both core and valence states, in contrast to PPs where the indices run over only the valence states.
Proceeding in the same manner as Görling et al. [1,2,7], the functional derivative chain rule is employed to obtain the
exchange potential
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where "ik are the Kohn-Sham eigenvalues and
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In order to obtain the functional derivative �vs�r0�=�n�r�,
the linear-response operator �, defined by the relation

�n�r� �
Z
dr0��r; r0��vs�r0�;

must be inverted. This is not possible directly as � has a
zero eigenvalue corresponding to a constant eigenfunction.
However, in a basis that excludes such functions, the
inversion of � can be performed. Application of elemen-
tary perturbation theory to n leads to an explicit expression
for the response
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Implementations of EXX for pseudopotentials have used
the plane wave basis for expanding �. This is not feasible
in a FP-LAPW approach because of the strongly varying
wave functions inside the muffin tin. Instead, we propose a
new basis described below. The overlap densities ���r� 	
��ik�r��jk�r� and their complex conjugates are used as a
spanning set, where � 	 �ik; jk� with i and j labeling
occupied and unoccupied states, respectively. These are
the states of some representative k point that is chosen in
advance. This spanning set is then reduced to a basis set as
follows. First, the overlap matrix of the spanning set ele-
ments

O�� 	
Z
dr����r����r�

is obtained and diagonalized. Note that O, which is posi-
tive semidefinite, has non-negative eigenvalues. Next, all
the eigenvectors ofO corresponding to eigenvalues smaller
than a certain tolerance, �, are discarded. Finally, denoting
the remaining eigenvectors as v�� , where � labels the
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vector and � its coordinate, we seek a transformation
matrix C such that if
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Straightforward algebra shows that C should satisfy

CCy � �vyOv��1; (3)

where v is the matrix of eigenvectors v�� in columnwise
form. The matrix C is obtained by performing a Cholesky
decomposition on the right-hand side of Eq. (3). By virtue
of their construction and the fact that

R
dr���r� � 0, the

set of functions f~��g form an optimal basis for the expan-
sion and inversion of �, as well as for the term in square
brackets in Eq. (1). We should also point out that this basis
may be useful for FP-LAPW time-dependent DFT re-
sponse and GW methods.

Special attention should now be drawn to the calculation
of the nonlocal matrix elements [Eq. (2)], which may be
determined by a well-established method for solving
Poisson’s equation in a FP-LAPW environment [19]. The
differences here are that the densities are now complex and
there is a long-range term arising when q 	 k� k0 is
close to zero. This is treated by considering the so-called
pseudocharge density [17], which is chosen to be suffi-
ciently smooth within the muffin tins so that it may be
expanded in terms of plane waves, and yet has the same
multipole expansion as the real density. If we restrict k and
k0 such that q is in the first Brillouin zone (BZ), then the
long-range (LR) contribution to the matrix elements from
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the pseudocharge is
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where �il�q� and �lj�q� are the pseudocharge densities in
reciprocal space. This sum suffers from poor convergence
with respect to the number of q points [20]. We therefore
approximate it by an integral over a sphere of volume
equivalent to that of the BZ. The final expression is
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All the calculations in the present work are performed on a
mesh of 27 special k points in the irreducible BZ. As the
response and its inverse are very sensitive to the number of
empty states, we have taken special care to use a sufficient
number to converge the band gaps to within 0.01 eV. We
find that almost all the materials studied here have con-
verged d-band positions and band gaps with around 25
empty states. All the results presented are generated using
30 empty states. One final practical note is that the eigen-
value cutoff, �, discussed above, is taken to be 10�5 times
the largest eigenvalue of O. For example, for Si this results
in 73 elements in the full basis set. One should note that
expressed in terms of the LAPW basis the corresponding
number of elements in the basis would be 700.

We now turn to the question of the band gap in EXX. In
Fig. 1 we present the difference between the experimental
fundamental band gap and the KS band gap for various
semiconductors and insulators. (The absolute experimental
band gaps can be found in tables in Refs. [5,8].) One can
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FIG. 1 (color online). Difference between theoretical KS gaps
and experimental fundamental gaps in eV. Full-potential exact
exchange (FP-EXX), FP-EXX without core-valence interaction
(FP-EXX-ncv), FP-EXX with only spherical exchange (FP-
EXX-sph), and LDA (FP-LDA) results are from this work.
The PP-EXX results are from Refs. [5,8,9]. The LMTO-ASA-
EXX results are from Ref. [4] and the experimental data are
taken from Refs. [22–24]. Note that the LDA gap difference for
Ne is �10:25 eV and is off the scale of the plot.
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immediately see that, in contrast to the PP approach, the
agreement of KS gaps for the sp semiconductors is not
good. In fact, for semiconductors the FP-EXX band gaps
are overestimated with respect to experiments by up to
60%, whereas for all insulators except Xe we find an
underestimate of up to 24%. We further find that for Xe
the KS band gap is overestimated with respect to the
experimental fundamental and optical gap by 3.8% and
24.6%, respectively, while for other insulators it is under-
estimated up to 6%. Thus the contrasting behavior of the
sp semiconductors and insulators is not found in our all-
electron full-potential calculations. Finally, the worst
agreement, for both LDA and EXX, is seen in the sp
semiconductors ZnS and CdS, and one notes that both
these materials have very shallow d band positions.

In order to determine the reason for this behavior we
performed ground-state calculations for these materials by
ignoring the core-valence interaction term in the EXX
potential. We emphasize here that this term was removed
only from the exchange potential which, however, has
nevertheless a substantial effect on the KS band gaps.
The results are marked as FP-EXX-ncv in Fig. 1. One
notes that the deviation from the experimental gap is now
much less for all the semiconductors, while, on the other
hand, it increases for the insulators.

This trend is concomitant with the findings of the PP-
EXX calculations [5,8] where the performance of the EXX
potential in determining the KS gaps is excellent for semi-
conductors but not so for insulators. Previous all-electron
EXX calculations performed within the ASA show a simi-
lar overestimation of the gaps for semiconductors [4]. All
this suggests that the lack of core-valence interaction im-
proves the agreement of the KS band gaps with experi-
ments for sp semiconductors, whereas it worsens in the
noble gas solids and insulators in general.

In our work on magnetic metals [21] we found that
inclusion of the nonspherical contributions to the exchange
potential were crucial for obtaining the correct ground
state. It is thus interesting to determine the effect here of
retaining only the spherical part of the EXX potential.
These are marked as FP-EXX-sph in Fig. 1. Clearly the
effect of the shape approximation to the potential in all the
materials other than noble gas solids is substantial, and the
latter are, of course, expected to be well treated by the
spherical approximation being composed of almost inde-
pendent atoms.

Another property that is known to lead to errors in the
band gaps [10] and for which the LDA performs badly is
the position of the semicore d states. The LDA underbinds,
leading to displacement of d bands much above the experi-
mental value. In the past, quasiparticle band structures
have been determined using the self-energy calculated
with the GW approximation and shown to correct the
d-band position [11]. Also the SIC to the potential was
found to lead to good agreement between the theoretical
and experimental position of these d bands. Since the EXX
is self-interaction–free in nature, it should improve the
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FIG. 2 (color online). Difference between theoretical d-band
eigenvalues and experimental data in eV. Full-potential exact
exchange (FP-EXX), FP-EXX without core-valence interaction
(FP-EXX-ncv), and LDA (FP-LDA) results are from this work.
The results obtained using the GW calculation on top of the PP-
EXX ground state (GW-PP-EXX) are from Ref. [9], and the self-
interaction corrected potential within the PP approach (PP-EXX)
are from Ref. [12]. GW results calculated using a FP-LMTO
method (GW-FP-LMTO) and Hartree-Fock FP-LMTO (HF-FP-
LMTO) are from Ref. [10]. The GW calculation on top of the
LMTO-ASA-LDA ground state (GW-LMTO-ASA) are from
Ref. [11].
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d-band positions. Counterintuitively Rinke et al. [9] found
that even though the PP-EXX calculations result in a
downward motion of the d bands with respect to LDA,
still GW calculations are needed to fully correct the posi-
tions. It would be enlightening to see how the FP-EXX
potential, in which the core and valence states are treated
on the same footing, and which is truly self-interaction–
free, effects these semicorelike or corelike d bands.

We compare FP-EXX d-band eigenvalues with those of
previous PP-EXX, experiment, and various GW and SIC
calculations in Fig. 2. The compounds are chosen so that
d bands are in various energy regimes to get an overall
picture: corelike (Ge: experimentally �29:6 eV from the
top of the valence band), semicore (GaAs:�18:8 eV, InP:
�16:8 eV), and valence (ZnS: �8:7 eV, CdS: �9:2 eV).
As can be seen, the eigenvalues of d states obtained using
the FP-EXX method are in excellent agreement with ex-
periments. In fact, in several cases it is better than that of
the FP-GW results. Here again the agreement between the
FP-EXX-ncv and PP-EXX values of Rinke et al. [9] is
quite good. This indicates that the inclusion of core-
valence interaction is crucial for determination of the
correct d-band eigenvalues.

To summarize, we find that the lack of core-valence
interactions leads to an anomalously good agreement of
the KS gap with the experimental fundamental gap in sp
semiconductors. Inclusion of these interactions worsens
the band gaps compared to the experiments but leads to a
13640
consistent treatment of semiconductors and insulators. We
conclude that EXX alone certainly does not solve the band-
gap problem. However, we find d-band eigenvalues for a
wide variety of cases to be in agreement with experiments,
which is as good or better than that achieved by full-
potential GW calculations.
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