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Dynamical Zero-Temperature Phase Transitions and Cosmic Inflation or Deflation
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For a rather general class of scenarios, sweeping through a zero-temperature phase transition by means
of a time-dependent external parameter entails universal behavior: In the vicinity of the critical point,
excitations behave as quantum fields in an expanding or contracting universe. The resulting effects such as
the amplification or suppression of quantum fluctuations (due to horizon crossing, freezing, and squeez-
ing) including the induced spectrum can be derived using the curved space-time analogy. The observed
similarity entices the question of whether cosmic inflation itself might perhaps have been such a phase
transition.
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FIG. 1. Sketch of level structure near the critical point [4]. The
energy E of the levels is plotted as a function of some external
parameter g. At the critical point g � gc, the ground state
changes from j�<i to j�>i. Typical excitations above the
ground state j�<i for g < gc are denoted by � and �. Some
of the excitations (�) may remain stable after crossing the
critical point g � gc, whereas others (�) become unstable,
i.e., lie below j�<i.
In contrast to thermal phase transitions occurring when
the strength of the thermal fluctuations equals a certain
threshold (and so changes the character of the stable
phase), zero-temperature phase transitions such as quan-
tum phase transitions [1] denote the crossover of different
ground states at a certain (critical) value of some external
parameter, where quantum fluctuations play a dominant
role cf. Figure 1. In both cases, there exists a vast amount of
literature regarding the equilibrium properties in the vicin-
ity of the phase transition, for example, in view of universal
behavior (e.g., scaling laws) near the critical point.
However, since response times typically diverge in the
vicinity of the critical point, sweeping through the phase
transition with a finite velocity, for example, leads to a
breakdown of adiabaticity and thus might generate inter-
esting dynamical (nonequilibrium) effects. For thermal
phase transitions, a prominent example is the Kibble-
Zurek mechanism, i.e., the generation of topological de-
fects via rapid cooling (quench), which can be applied to
the phase transitions in the early universe as well as in the
laboratory [2].

The following considerations are devoted to nonequilib-
rium effects in a rather general class of zero-temperature
transitions, which also expose a remarkable analogy be-
tween cosmology and laboratory physics, see also [3]. Let
us consider a quantum system (at zero temperature) de-
scribed by the Hamiltonian Ĥ depending on some external
parameter g. At a certain critical value of this parameter gc,
the system is supposed to undergo a phase transition, i.e.,
the ground state j�<�g�i of Ĥ�g� for g < gc is different
from the ground state j�>�g�i of Ĥ�g� for g > gc. For
example, j�<�g�i and j�>�g�i could have different global/
topological properties (such as magnetization) in the ther-
modynamic limit.

Before the phase transition g < gc, the phase space can
be explored in terms of quasiparticle excitations above the
ground state j�<�g�i. If we make the assumption that the
Hamiltonian Ĥ is analytic [4] in the external parameter g,
we may follow the behavior of these excitations through
the critical point gc and extrapolate them to the region g >
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gc. For g > gc, the state j�<�g�i is no longer the ground
state and hence some of the excitations must become
unstable after the critical point g > gc, since now
j�>�g�i has a lower energy than j�<�g�i cf. Figure 1. In
the following, we shall focus on these quasiparticle exci-
tation modes, whose energy is positive for g < gc and
becomes negative after crossing the critical point g > gc.
In order to describe these excitations quantitatively, a few
additional assumptions/approximations are necessary.

Linearity.—We assume that the crossover from stability
to instability of these modes can be described using linear
stability analysis, i.e., that the associated quantum fluctua-
tions are small enough. Consequently, the onset of insta-
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bility occurs if the dispersion relation !2�k� dives below
the k axis.

Vanishing gap.—Since we are mainly interested in low-
energy and long-wavelength excitations (which will turn
out to yield universal behavior largely independent of the
microscopic structure), we shall assume that the modes �
are gapless such as Goldstone modes, i.e., !2�k � 0� � 0
for all g. The analogy to quantum fields in an expanding or
contracting universe applies to the general case with a gap
as well, but the main points of interest (analogue of cosmic
horizon) can be studied for gapless modes.

Analyticity.—The dispersion relation !2�k; g� is sup-
posed to be an analytic function of k. Hence a Taylor
expansion starts with the term [with c2�g < gc�> 0]

!2�k; g� � k2c2�g� �O�k3�: (1)

Independence.—As the final ingredient, we assume that the
unstable modes are independent of each other such that it
suffices to consider one scalar mode �.

Based on these assumptions, we may construct the low-
energy effective theory describing the mode � in the
vicinity of the critical point gc according to the dispersion
relation (1). As demonstrated in Ref. [5], given the above
conditions, the most general low-energy effective action
can be cast into the form

L eff �
1

2

������������
�geff
p

g��eff �@����@���; (2)

where
������������
�geff
p

g��eff denotes a matrix depending on the sys-
tem under consideration as well as the external parameter
and a sum convention over �; � � 0 . . . 3 is employed.

Hence the excitations � behave as minimally coupled
and massless scalar quantum fields in curved space-times
whose geometry is determined by the effective metric g��eff ,
which is basically the underlying idea of the analogue
gravity concept, see, e.g., [6,7]. If we assume the quantum
system under consideration to be effectively homogeneous
and isotropic at large wavelengths �, the above action
simplifies to

L eff �
1

2

�
1

�
_�2 � ��r��2

�
: (3)

The external parameters � and � may depend on g and
hence on time and must be non-negative before the phase
transition. The convenience of the choice of 1=� in the first
term becomes apparent after constructing the associated
effective Hamiltonian

H eff �
1

2
���2 � ��r��2�: (4)

In the homogeneous and isotropic case, the effective metric
reads (for g < gc)

ds2
eff �

����������
��3

q
dt2 �

����������
�=�

q
dr2: (5)

Since the mode � becomes unstable for g > gc, at least
one of the two parameters has to change its sign at the
13570
critical point. There are basically three possibilities:
(A) � # 0 while � remains finite. (Note that 1=� # 0 is
not possible since the propagation speed would diverge.)
According to Eq. (5), the effective metric corresponds to an
expanding universe in this case. (B) � # 0 while � remains
finite (similarly, 1=� # 0 is not possible), which corre-
sponds to a contracting universe. (C) Both � and� become
singular.

Having established the analogy to cosmology, we may
now apply the tools and concepts known from curved
space-times [8]. The space-time described by the above
metric contains a (particle) horizon if the maximum dis-
tance (measured in comoving coordinates) which can be
traveled starting at the time tin

�r �
Z tout

tin
dt c�t� �

Z tout

tin
dt

������������������
��t���t�

q
; (6)

is finite, i.e., points beyond the horizon size �r can never
be reached. Obviously, since c �

������������������
��t���t�

p
is bounded

from above, a horizon always exists if the critical point is
reached in a finite laboratory time tout (which might still
correspond to an infinite proper time in cosmology), but
also if � and/or � decrease fast enough for tout " 1, for
example, � / 1=tn with n > 2 cf. [9].

As one can infer from the above equation, the horizon
size (in terms of the laboratory coordinates t; r) always
decreases as tin increases. Hence, all � modes with a given
(effective) wavelength � cross the horizon at some time
(when � exceeds the horizon size �r). After this horizon
crossing, the modes cannot oscillate anymore (freezing)
due to loss of causality across the horizon and their quan-
tum state gets squeezed. This mechanism is completely
analogous to the amplification of quantum vacuum fluctu-
ations of the inflaton field in our present standard model of
cosmology—which are supposed to be the seeds for struc-
ture formation.

In order to cast this analogy into a more quantitative
form, let us consider the equations of motion for ��

@
@t

1

��t�
@
@t
� ��t�r2

�
� � 0: (7)

In the homogeneous and isotropic case r� � r� � 0,
there is a duality between the field � and its canonical
momentum � � _�=� since � obeys the same the equa-
tion of motion as � with � and � interchanged�

@
@t

1

��t�
@
@t
� ��t�r2

�
� � 0: (8)

This duality is analogous to that between the electric and
magnetic field in the absence of macroscopic sources.
However, even though the equations of motion in cases
(A) and (B) are related by this duality, the behavior of the
quantum fluctuations (e.g., their spectrum) is different.

Assuming general power-law time dependence near the
critical point � / ta and � / tb, we may remember the
coordinate invariance of the effective geometry and intro-
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duce another time coordinate � proportional to t2=�2�a�b�,
for which the wave equation simplifies to�

@2

@�2 �
2�� 1

�
@
@�
� r2

�
� � 0; (9)

provided that � is given by

� �
1� a

2� a� b
: (10)

Hence the solutions for the spatial Fourier modes can be
expressed in terms of Hankel functions [10]

��k ��� � ��H�� �k��: (11)

Sufficiently far away from the critical point j�j " 1, the
modes oscillate ��k ��� � �

�e�ik�=
������
k�
p

and the solutions
��k are basically the functions in the expansion into crea-
tion and annihilation operators corresponding to the adia-
batic vacuum state cf. [8]. When approaching the phase
transition, however, adiabaticity breaks down and the
modes cross the horizon and freeze [10]

��k �j�j # 0� � k��: (12)

That is, the spectrum of the two-point correlation function
h�̂�r��̂�r0�i of the frozen quantum fluctuations is deter-
mined by the parameter � > 0 in Eq. (10).

Let us examine a few examples: The trivial case a �
b � 0 of course reproduces the undisturbed spectrum � �
1=2. Neglecting the backreaction of the quantum fluctua-
tions onto the dynamics of the external parameter g, its
time evolution g�t� should not experience anything special
at the critical point g � gc and hence the most natural
choice for its dynamics is a constant velocity g� gc / t. If
we assume the effective Hamiltonian to be an analytic
function of g, this implies a � 1 and/or b � 1.
(Otherwise a and b are the characteristic exponents jg�
gcja and jg� gcjb occurring in Ĥ.) In case (A) (expanding
universe) with a � 1 and b � 0, we obtain � � 2=3, i.e.,
quantum fluctuations with large wavelengths are amplified.
Case (B) (contracting universe) with a � 0 and b � 1
yields � � 1=3, i.e., quantum fluctuations with large wave-
lengths are suppressed. Finally, a � b � 1 [case (C)] leads
to an undistorted spectrum � � 1=2, which is not surpris-
ing once one realizes that the effective metric in Eq. (5) is
exactly flat in terms of the new time coordinate ds2

eff �
d�2 � dr2.

Now we are in the position to apply the above method to
some concrete physical systems: As a first example, we
consider atomic Bose-Einstein condensates. In the dilute-
gas limit, the quantum phase and density fluctuations are
small and can be treated as linear perturbations. For wave-
lengths far above the healing length, the effective action of
the phase fluctuations � reads (@ � 1)

L eff �
1

2

�
1

g
_�2 �

%0

m
�r��2

�
; (13)

where %0 is the background density of the condensate, m
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the mass of the atoms, and g the time-dependent coupling
strength representing the interparticle repulsion g > 0 or
attraction g < 0. Obviously, a homogeneous condensate
becomes unstable for attractive interactions (i.e., gc � 0)
and this scenario g # 0 corresponds to case (A), i.e., an
expanding universe. Hence sweeping through the phase
transition at gc � 0 by means of a time-dependent external
magnetic field (Feshbach resonance) with a finite velocity
generates a k�4=3 spectrum of the two-point phase-phase
correlation function. However, it might be difficult to
measure the phase after the phase transition (disaggrega-
tion of homogeneous condensate), whereas the frozen
density fluctuations with large wavelengths should easily
be measurable. The density fluctuations are just the canoni-
cally conjugated momentum field � and can be calculated
analogously using the duality in Eqs. (7) and (8), but with
an additional factor of k in Eq. (11). Hence the spectrum of
the density-density correlation function behaves as k�4=3.
Note that this behavior is consistent with the amplification/
suppression of quantum fluctuations by squeezing, which
maintains the minimal Heisenberg uncertainty of the
ground state, i.e., �qk�pk � @=2.

As a second example, let us study a simple 1� 1 di-
mensional model of the electromagnetic field coupled to a
linear medium via the magnetic component

L eff �
1

2
�E2 � B2 � _�2 ��2�2 � 2gB��; (14)

with the electromagnetic field being governed by the po-
tential A via E � @tA and B � @xA. The field � describes
the (linearized and localized) dynamics of the medium
with the plasma frequency � and g denotes the coupling
(magnetic dipole moment). Averaging over the degrees of
freedom � of the medium, the low-energy effective theory
for the macroscopic electromagnetic field yields the per-
meability 1=� � 1� g2=�2 (which corresponds to insert-
ing the adiabatic solution � � gB=�2 back into the
action). Hence there is a phase transition at the critical
value of the coupling gc � � after which the medium
develops a spontaneous magnetization and the linearized
description above breaks down. Identifying A � �, this
scenario corresponds to case (B). Hence the frozen two-
point spectra behave as k�2=3 for A, and thus k4=3 forB (and
�), and finally k2=3 for E � � (again respecting
�qk�pk � @=2) if we sweep through the critical point
with a finite velocity. Note that, for the source-free macro-
scopic electromagnetic field, one can also introduce the
dual potential � via H � B=� � @t� and D � E � @x�,
which explicitly incorporates the duality in Eqs. (7) and
(8), i.e., case (B)! case (A), and consequently has a k�4=3

spectrum.
Finally, as a third example, we consider a very simple

version of the Heisenberg model

H � �g�t�
X
hiji

�i 	 �j; (15)
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with �i being the Pauli spin-1=2 operators for each lattice
site i and hiji denoting the sum over nearest and next-to-
nearest neighbors, for example. The ferromagnetic state
j�<i � j . . . """" . . .i is the ground state for g > 0 and
breaks the O�3� invariance of the Hamiltonian; thus the
spin waves (magnons) are gapless (Goldstone theorem).
Obviously, g � 0 is the critical point here, after which the
energy of the magnons becomes negative. In view of the
global factor g�t�, this scenario is an example for case (C)
with � � � � g, i.e., a � b. The observation that the
spectrum of the fluctuations is not disturbed by the dynam-
ics of g�t� can also be explained by the fact that the
ferromagnetic state j . . . """" . . .i is an exact eigenstate of
the Hamiltonian; i.e., even the decay from j�<i to j�>i is
impossible with the exact Hamiltonian in Eq. (15) and
requires some disturbances.

In summary, the analogy between the excitations � and
quantum fields in an expanding or contracting universe
allows us to apply universal geometrical concepts such as
horizons to a rather general class of quantum systems
approaching the critical point. Near the phase transition,
adiabaticity breaks down (since the energy gap vanishes)
and the system does not stay in its (instantaneous/adia-
batic) ground state in general. The spectrum of the two-
point correlation function of the quantum fluctuations fro-
zen out at the phase transition (which can be the seeds for
pattern formation, etc.) can be derived quite independent of
the microscopic details of the considered system and is
basically determined by the characteristic exponents a and
b (universal behavior). The strength of the frozen fluctua-
tions, however, and their dynamics after crossing the criti-
cal point (nonlinear instabilities, etc.) depend on the
explicit microscopic structure (e.g., the diluteness parame-
ter in Bose-Einstein condensates).

As an outlook, one might compare phase transitions
(such as the examples considered above) to ‘‘real’’ cosmic
inflation, which is part of the present standard model of
cosmology. Interestingly, phase transitions reproduce
many features of inflation: The decay of j�<i down to
j�>i at g > gc (breakdown of adiabaticity) releases en-
ergy [analogous to (p)reheating]. Phase transitions display
universal behavior (no fine tuning) in the sense that initial
small-scale deviations from j�<i are not important after
the transition g > gc. Similarly, the large-scale homoge-
neity may be explained naturally. However, even though
quantum fluctuations generate small inhomogeneities in
both scenarios (phase transitions and real cosmic inflation),
none of the examples considered above reproduces the
correct scale-invariant 1=k3 spectrum. However, that is
not surprising as the examples considered above break
many symmetries we observe in the real universe, e.g.,
they possess a preferred frame and do not respect the
principle of equivalence, etc. If we demand that the effec-
tive action (at least at low energies) does not single out a
locally preferred frame (e.g., the two-point function
h�̂�x��̂�x0�i depends on the Ricci scalar, etc.) and that
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the velocity of propagation (i.e., the speed of light) be
constant, the critical exponents must be a � 2 and b �
�2, i.e., the effective action reads

A �
Z
dtd3r

1

2

_�2 � �r��2

t2
: (16)

It turns out that the effective action satisfies the two con-
ditions above (no locally preferred frame and constant
speed of light) if and only if it is scale invariant
A
�t; �r� �A
t; r�. Since the above action corresponds
to the de Sitter metric in conformal time, it reproduces the
scale invariant 1=k3 spectrum cf. Equation (10) and [9].
One would expect the dynamics of this action, which has
been motivated by demanding the above symmetries, to be
generated by the backreaction, which has been omitted so
far and which respects these symmetries. These interesting
findings entice the question/speculation of whether cosmic
inflation itself might perhaps have been such a phase
transition.
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