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How Multivalency Controls Ionic Criticality
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To understand how multivalency affects criticality in z:1 ionic fluids, we report an ion-cluster
association theory embodying ionic solvation and excluded volume for equisized hard-sphere models
with z = 1-3. In accord with simulation but contradicting integral equation and field theories, the reduced
critical temperature falls when z increases while the density p. rises steeply. These trends can be
explained semiquantitatively by noting that 80%—-90% of the ions near 7, are bound in neutral or charged
clusters, depleting the ionic strength. For z # 1, predicted interphase Galvani potentials vanish at 7.
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Multivalent ions play a significant role in condensed-
matter, physicochemical, biophysical, and, via the plasma
transition, astrophysical contexts [1]. The effects of multi-
valency are, however, often hard to comprehend. One cen-
tral issue—relevant to electrolyte solutions, molten salts,
liquid metals, and dense plasmas [1]—arises in Coulomb-
driven phase separation. The most basic model for such
ionic fluids consists of N = pV hard-core spherical ions of
various species o in a volume V of uniform dielectric
constant D, with N, = p,V ions of diameter a, carrying
charges g, = z,qy, where g is an elementary charge. In
the simple equisized z:1 charge-asymmetric primitive
models (C,APMs), on which we focus here, one has o =
+,—, ay =a_, and g, = zq9, g— = —¢qp- The basic
energy scale and associated reduced temperature and den-
sity are then & = zg3/Da, T* = kgT/e, p* = pa’.

Monte Carlo (MC) simulations [2] show that (at least for
z < 5) the C,APMs exhibit “gas-liquid” phase separation;
furthermore, the critical parameters, T, (z) and p:(z), are
found to reasonable precision: see the open circles in
Figs. 1 and 2 and Table I. One observes that T;(z) falls
with increasing z, while p}(z) rises sharply. But we ask:
How can these trends be understood? Or accounted for
semiquantitatively? To address this issue, we review briefly
previous work, including a pioneering field-theoretic at-
tack [3], and then report on recent, rather substantial
calculations [4] which we believe provide significant in-
sight and a base on which, as we then show, an effective
heuristic analysis can be built. This new study [4] extends
an earlier analysis I [5] for the symmetric z = 1 restricted
primitive model (RPM) that was founded on the original
Debye-Hiickel (DH) approach but incorporated (i) Bjerrum
ion pairs and (ii) their solvation in the residual ionic fluid.
For z = 2 and 3 larger ion clusters, trimers and tetramers,
must be included [4]; but then explicit results are also
obtained for the interphase Galvani potential [6] that ap-
pears in any two-phase nonsymmetric ionic system [4,6].

The field-theoretic analysis of Netz and Orland (NO) [3]
was designed to address z:1 ionic fluids and colloids
(z > 1) and to include correlations in a systematic manner.
The Coulomb interaction, ¢,q,/r, was transformed to
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yield a functional integral over an auxiliary potential
¢(r). At the (¢?) level the DH effective interaction, vpy o
e *"/r, is captured with

K*(T5{pe}) = 4m(q5/DksT)D 250, (D)

The reduced free energy density, f(T;p) = —F/VkT,
was computed to eighth order in ¢ but a momentum cutoff
is essential: NO adopted |k ,| = 277/a, thereby incorpo-
rating the ionic diameter and, for the z:1 case, leading to
k?a®> = 4mp*/T*. Since this treatment of the hard cores is
approximate, accurate predictions for T} (z) and p(z) are
not expected. Nevertheless, one might anticipate reliable
trends when z varies in contrast to DH theory, which yields
no dependence on z with (after I)
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FIG. 1. Reduced critical temperatures for z:1 charge-

asymmetric equisized hard-core primitive model electrolytes
(C,APMs) according to Monte Carlo (MC) simulations [2];
Debye-Hiickel (DH) theory; field-theoretic approaches: NO [3]
(with a factor %) and a ‘“‘new mean-field theory”” (NMF) [7];
approximate integral equations: the mean spherical approxima-
tion (MSA) [8], and the symmetric (SPB) and modified (MPB)
Poisson-Boltzmann theories [9]; and the current solvated ion-
cluster theory with (DHBjCIHC) and without (DHBjCI) hard-
core terms [4].
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TABLE I. Monte Carlo (MC) estimates [2] for the reduced
critical parameters for z:1 equisized hard-sphere electrolytes;
values calculated from the current solvated ion-cluster theory
with hard-core terms (CI) [4]; and approximate estimates

(Epn, - - -» E,) based on ion-cluster statistics: see text.
Critical temp.  102T%(z)  Critical density  10%p%(z)
z MC ClI Epy Eye MC . E, E,
1 493; 5569 545 4935 17.50 261, 272 237
2 470 490, 5.11 4.65 9.3 6.26; 4.27 3.49
3 410 433, 485 444 125 11.90  6.96 5.40
DH: «k.a=1 T:=1/16, pi=1/647=0.005.

2

In fact, as NO report, ‘“‘the [predicted] deviations from DH
theory are pronounced” for z > 1: see Figs. 1 and 2.

But evidently the NO results are not merely quantita-
tively wrong; the trends are quite incorrect since T is
asserted to rise rapidly (instead of falling) while p} falls
sharply for small z — 1 (instead of rising) and then in-
creases but much too slowly. While one may blame the
approximate treatment of the hard cores, we believe this is
not the primary culprit. Indeed, a recent field-theoretic
analysis paid closer attention to the ion-ion repulsions
[7]; but the subsequent ‘“‘new mean-field”’ (NMF) results
still exhibit strong increases in 7T and an overly weak
variation of p?: see the NMF plots in Figs. 1 and 2 [7].

Integral-equation theories are hardly better: see Figs. 1
and 2. The mean spherical approximation (MSA), like DH
theory, predicts no variation of T: and p} with z [8]. A
symmetric Poisson-Boltzmann (SPB) theory [9] does pre-
dict the correct falling and rising trends for 7' and p}., but
the degree of variation is woefully inadequate. Moreover,
the modified Poisson-Boltzmann (MPB) approximation,
which the same authors [9] argue should be more reliable,
yields the wrong trend for T».
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FIG. 2. Reduced critical densities p}(z), for the C_APM elec-
trolyte as in Fig. 1 (except that the NO plot is not rescaled).

In order to better understand the effects of multivalency
we turn to recent calculations [4] based on the solvated ion-
cluster view [5] of the C,APM near criticality that is
supported ‘“pictorially‘‘ by simulations [2]. In brief, the
aim is to construct the free energy density, f(T;{p,}), for
ionic species o consisting of (i) + and — monomers, i.e.,
isolated, n, =n_ =1 single, unassociated ions of valency
z+ =z and z_ = —1; (ii) a set of associated primary clus-
ters, o =2,3,..., dimers, trimers, etc., each consisting of
one ‘“central” + ion and m, = o — 1 “satellite’’ counter-
ions for a total of n, =m, + 1 ions in a cluster of valency
7, =2 — Mg; up to (iii), the largest primary cluster, the
neutral or “molecular” (z+ 1)-mer of one z, ion and z
negative ions [4].

For each species, f contains an ideal-gas term
YT, p,), and an electrostatic term f2(T,{p,}), that,
following DH, incorporates cluster solvation in the par-
tially associated ionic fluid: this description is thus dubbed
“DHBjCI” [4]. By adding a hard core (HC) free-volume
term, f1¢({p,}), as in I, one may also account for those
excluded volume effects not already encompassed in the
basic solvation and association calculations [4,5], so gen-
erating a “DHBjCIHC” theory [4]. (The effective HC
virial coefficient B9 =443 /332 has been adopted
[4,5].) Examination of Figs. 1 and 2 reveals that these
solvated ion-cluster theories are surprisingly successful.
Not only are both the downward trend in T;(z) and the
rapid rise of p}(z) well captured, but the quantitative
agreement with each of the MC estimates is significantly
better than achieved by other approaches.

One must recognize that (all) these theories are of mean-
field character: thus 5% to 15% overestimates of T (z) are
to be expected. Indeed, neglected fluctuations typically
depress T, by such amounts and also flatten the coexistence
curves as seen in Fig. 3. Second, note that the hard-core
terms have a small effect on p}(z) while reducing T} (z)
values by only 5%—10%. Nevertheless, Fig. 3 reveals that
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FIG. 3. Coexistence curves predicted for z:1 equisized primi-
tive models by the DHBjCI and DHBjCIHC theories (solid and
dashed lines, respectively) together with Monte Carlo estimates
based on [10].
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the liquid phases, especially for p* = 0.15, are sensitive to
fHC: but, recall the discussion in I. In fact, the crucial
feature of DHBj-type theories—not represented in field-
theoretic or standard integral-equation treatments—is the
chemical equilibrium maintained between the cluster spe-
cies via the law of mass action:

-kl B
for o = m + 1 = 2, with the excess chemical potentials

wE = —(3/0p)LHC + 3, f2], while the association
constants are taken as [4,5]

K, .(T;R) = — l_[f dr;e p( Em:(r; })>, 4

= Ky (T)p 4 p” explpu* + mp

in which &, _({r;}) is the electrostatic energy of an isolated
(m + 1)-mer with satellite coordinates {r;}. The lower
limits a and the condition &,,, = +oo for |r; — rjl <a
represent hard cores. Following Bjerrum [5], the necessary
cutoff radius R is chosen so that (0K, ,/dR) is minimal.
The resulting threefold K, , integral is manageable but the
sixfold integral for K3 ; requires a Padé approximant study
of the low-T expansion cross-checked to a part in 103 by
MC evaluations [4]. It transpires, however, that T and p}
are insensitive to the K, , [4].

Lastly, one needs to account for the solvation of all the
ion species, o, by the free ions and charged clusters via the
electrostatic terms [4,5]

47p, <

FET:{p,)) = DiyT 2

s 5 Gogp.

o m=—1

where the u,;(x) are related to the spherical Bessel func-
tions k;(x) [4]; the second sum requires the cluster electric
multipole moments, Q7 , thermally averaged [4] over the
ionic configurations that already enter in the K,, (7).

Finally, a,, is an effective cluster diameter, i.e., the radius
of the approximating sphere (centered to minimize f5)
that substitutes for the true, thermally fluctuating, hard-
core exclusion domain: see I and [4]. One concludes, as in
I, that a most reasonable choice for a,, is the average over
solid angle of the radial distance to the true exclusion
surface of the ground-state cluster: this yields a, = (4
2 In3 = 1.162)a, a3 = 1.250a, and a4 = 1.375a.Forz = 1
the values of 77 and p: vary by less than £2% over
plausible alternatives for a, [4]; but the sensitivity to aj
and a4 for z = 2 and 3 is greater. As a result, this hard-to-
avoid approximation contributes significantly to the overall
quantitative uncertainties.

From the total free energy f(T,{p,}), all thermody-
namic properties follow [4,5]. One may then conclude
from Figs. 1 and 2 that the principal defect of the field-
theoretic and integral-equation approaches is a failure to
account effectively for strong ionic association near criti-
cality. But can the actual trends of T, and p} with z be
demonstrated in a direct, transparent way? To answer,
consider the fractions, y, = n,N,/N, of ions bound in

clusters of n, ions with p, = (y,/n,)p. The critical point
values that result from DHBjCIHC theory [4,11] are dis-
played in Table II. A significant fact is the rapid decrease in
y%., the fraction of unassociated z, ions, from 9.1% to
1.3% to 0.3%. But more can be learned.

To understand the variation of T} (z) let us regard the
electrolyte in the critical region as a mixture of clusters
with fixed mole fractions x, = (y,/n,)/> .(y,/n,;). A
pair (o, 7) will either mutually repel or attract with pair-
wise binding energies, say, €,,. Thus unlike monomers
attract with e. = &. However, a dimer attracts only nega-
tive monomers with &, = (z — 1)&/z; but repels all z, =
+2 ions. Two dimers repel when z = 3; but one has
€5,/€ = 0.586 and 0.345 for z = 1 and 2. And so on.

To estimate T for this mixture we adopt a van der Waals
approach as in [10(b)]. Thus, for the overall cluster density
p (= p>,ye/ng), wetake p/pkpT = Z(Byp) + B\(T*)p
with Z(u) = 1 + u + ... in which the second virial coef-
ficient has been decomposed as B(T*) = B, + B,(T")
where B, (=bya?, say) represents the hard-core repulsions
while B,(T*) embodies the attractions. Solving d,p =
a2p =0, as usual, yields p; and B: = B,(T})/boa’. At
low T, which is relevant here, one has

By(T*) = => byra®xyx, exp(es,/T"), (6)

where &% = g,,/e, while b,.a’> specifies the volume of
mutual attractions: this vanishes if o and 7 repel.

Now, the x, x_ term dominates in B;(T*) at low T with
corrections of relative order (x3/x, x_)e 044/ for 7 = 1
and 2(x,/x4)e” V=T for z = 2. We may then calibrate
B,(T%)/a® by using pure DH theory (2) for which, since
association is not considered, x, = x_ = 1. Thereby we
obtain the Epy estimates

Ti(z) =~ 1/[16 + | Indx< (z)x< (z)|], @)

in which x¢ « y¢ and x¢ « y¢ follow from Table II.

The resulting predictions are listed in Table I under Epg.
In light of the heuristic nature of the arguments, they reflect
the trend of the MC and CI values surprisingly well.
Certainly the contention that association is a prime factor
is well confirmed. By replacing 16 by 20.27 (or 17.96) in
(7), and the factor 4 by 1/x%(1)x° (1), one calibrates
B, (T?) on the MC (or CI) values for the RPM. Column
Eyc in Table T lists the MC-calibrated values: for z = 2

TABLE II. Inverse screening length « and fractions, y, =
nyN,/N, of ions in clusters of n, ions at criticality, as percent-
ages, according to DHBjCIHC theory [4].

C C C

z Kca L v Y5 Y3 Vi

1 1.04 9.14 9.14 81.72 e

2 1.37 .31 10.33 15.43 72.93 e
3 1.57 0.34 8.04 3.32 11.13 77.17
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FIG. 4. Reduced Galvani potentials, A¢d = goAd/kyT, vs
T/T, for z:1 electrolytes according to pure DH theory (dotted
lines) and DHBjCI(HC) theories: solid (dashed) plots.

and 3 these match the Monte Carlo estimates to within 1%
and 8%, respectively.

Now, for the critical density, the significance of ion
pairing is already clear in pure DHB]j theory for the RPM
[5]. The heavy depletion of the free ions (which, in DHB;j
theory, drive the transition alone) means that to reach
criticality the overall density p (=p4+ + p_- + 2p,) must
be increased until the DH criterion p’ + p% = piy; =
1/647r is met: see (2). Does the same depletion-by-
association mechanism account for the z dependence of
pe(2)?

To progress, rewrite (1) generally as k*a®> = 4mpt/T*,
with the effective, depleted ionic density

Pt = "> 20y, (T{psD/ 20, (®)

If one accepts the DH criterion and uses Table II, the
estimates E,, in Table I, result. Although these fall short
of the Monte Carlo values by 74%, 54%, and 44% for z =
1-3, they reproduce the accelerating increase with z (by
factors 1.57, 1.63 vs 1.24, 1.34).

An alternative approach adopts the DH value «x.a = 1:
see (2) but note from Table II that DHBjCIHC theory
implies that x.a rises from 1.04 for the RPM to 1.57 for
z = 3. Then using the Epy values for T, in Table I, leads
to the E, predictions for p}(z): these are all rather low but
the increases with z, by factors 1.47 and 1.55, again reflect
the correct behavior.

Finally, we note that the Galvani potential, A, that
arises between coexisting phases in charge-asymmetric
fluids is readily calculated [4,6]. The predictions from
pure DH theory are shown dotted in Fig. 4: one finds
A¢py « (1 —z71). The other plots result from the
DHBjCI and DHBjCIHC theories [4]. Surprisingly, the
calculations suggest no clear trend with z. It is natural to
conjecture that A ¢ vanishes as Gy(T, — T)#; moreover, to

the extent that the expected mean-field value S =% is
realized, the present results support this.

In conclusion, we have elucidated the mechanisms
underlying how multivalency influences critical behavior.
Specifically, we have summarized briefly analytical calcu-
lations for 3:1, 2:1, and 1:1 equisized charged hard-sphere
fluids [4] that, for the first time, reasonably reflect the true
variation of critical temperatures and densities, T (z) and
pi(z) (as revealed by simulations [2]). On that basis,
supported by analysis that correlates T (z) and pi(z) with
the increasingly depleted populations of free ions and
charged clusters as z increases, it is clear that recognizing
ionic association is inescapable for a successful theory.
Previous treatments [3,7-9], lacking allowance for ion
clusters fail seriously. The ion-cluster solvation theories
also yield quantitative results for the interphase Galvani
potentials.
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