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How Multivalency Controls Ionic Criticality
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To understand how multivalency affects criticality in z:1 ionic fluids, we report an ion-cluster
association theory embodying ionic solvation and excluded volume for equisized hard-sphere models
with z � 1–3. In accord with simulation but contradicting integral equation and field theories, the reduced
critical temperature falls when z increases while the density �c rises steeply. These trends can be
explained semiquantitatively by noting that 80%–90% of the ions near Tc are bound in neutral or charged
clusters, depleting the ionic strength. For z � 1, predicted interphase Galvani potentials vanish at Tc.
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FIG. 1. Reduced critical temperatures for z:1 charge-
asymmetric equisized hard-core primitive model electrolytes
(CzAPMs) according to Monte Carlo (MC) simulations [2];
Debye-Hückel (DH) theory; field-theoretic approaches: NO [3]
(with a factor 1

10 ) and a ‘‘new mean-field theory’’ (NMF) [7];
approximate integral equations: the mean spherical approxima-
tion (MSA) [8], and the symmetric (SPB) and modified (MPB)
Poisson-Boltzmann theories [9]; and the current solvated ion-
cluster theory with (DHBjCIHC) and without (DHBjCI) hard-
core terms [4].
Multivalent ions play a significant role in condensed-
matter, physicochemical, biophysical, and, via the plasma
transition, astrophysical contexts [1]. The effects of multi-
valency are, however, often hard to comprehend. One cen-
tral issue—relevant to electrolyte solutions, molten salts,
liquid metals, and dense plasmas [1]—arises in Coulomb-
driven phase separation. The most basic model for such
ionic fluids consists of N � �V hard-core spherical ions of
various species � in a volume V of uniform dielectric
constant D, with N� � ��V ions of diameter a� carrying
charges q� � z�q0, where q0 is an elementary charge. In
the simple equisized z:1 charge-asymmetric primitive
models (CzAPMs), on which we focus here, one has � �
�;�, a� � a�, and q� � zq0, q� � �q0. The basic
energy scale and associated reduced temperature and den-
sity are then " � zq2

0=Da, T� � kBT=", �� � �a3.
Monte Carlo (MC) simulations [2] show that (at least for

z & 5) the CzAPMs exhibit ‘‘gas-liquid’’ phase separation;
furthermore, the critical parameters, T�c �z� and ��c�z�, are
found to reasonable precision: see the open circles in
Figs. 1 and 2 and Table I. One observes that T�c �z� falls
with increasing z, while ��c�z� rises sharply. But we ask:
How can these trends be understood? Or accounted for
semiquantitatively? To address this issue, we review briefly
previous work, including a pioneering field-theoretic at-
tack [3], and then report on recent, rather substantial
calculations [4] which we believe provide significant in-
sight and a base on which, as we then show, an effective
heuristic analysis can be built. This new study [4] extends
an earlier analysis I [5] for the symmetric z � 1 restricted
primitive model (RPM) that was founded on the original
Debye-Hückel (DH) approach but incorporated (i) Bjerrum
ion pairs and (ii) their solvation in the residual ionic fluid.
For z � 2 and 3 larger ion clusters, trimers and tetramers,
must be included [4]; but then explicit results are also
obtained for the interphase Galvani potential [6] that ap-
pears in any two-phase nonsymmetric ionic system [4,6].

The field-theoretic analysis of Netz and Orland (NO) [3]
was designed to address z:1 ionic fluids and colloids
(z� 1) and to include correlations in a systematic manner.
The Coulomb interaction, q�q�=r, was transformed to
05=95(13)=135701(4)$23.00 13570
yield a functional integral over an auxiliary potential
��r�. At the h�2i level the DH effective interaction, vDH /
e��r=r, is captured with

�2�T; f��g� � 4��q2
0=DkBT�

X
�

z2
���: (1)

The reduced free energy density, �f�T;�� � �F=VkBT,
was computed to eighth order in � but a momentum cutoff
is essential: NO adopted jk�j � 2�=a, thereby incorpo-
rating the ionic diameter and, for the z:1 case, leading to
�2a2 � 4���=T�. Since this treatment of the hard cores is
approximate, accurate predictions for T�c �z� and ��c�z� are
not expected. Nevertheless, one might anticipate reliable
trends when z varies in contrast to DH theory, which yields
no dependence on z with (after I)
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TABLE I. Monte Carlo (MC) estimates [2] for the reduced
critical parameters for z:1 equisized hard-sphere electrolytes;
values calculated from the current solvated ion-cluster theory
with hard-core terms (CI) [4]; and approximate estimates
(EDH; . . . ; E�) based on ion-cluster statistics: see text.

Critical temp. 102T�c �z� Critical density 102��c�z�
z MC CI EDH EMC MC CI E� E�

1 4:933 5:569 5:45 4:935 7:50 2:614 2:72 2:37
2 4:70 4:907 5:11 4:65 9:3 6:261 4:27 3:49
3 4:10 4:334 4:85 4:44 12:5 11:90 6:96 5:40
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DH : �ca � 1; T�c � 1=16; ��c � 1=64� ’ 0:005:

(2)

In fact, as NO report, ‘‘the [predicted] deviations from DH
theory are pronounced’’ for z > 1: see Figs. 1 and 2.

But evidently the NO results are not merely quantita-
tively wrong; the trends are quite incorrect since T�c is
asserted to rise rapidly (instead of falling) while ��c falls
sharply for small z� 1 (instead of rising) and then in-
creases but much too slowly. While one may blame the
approximate treatment of the hard cores, we believe this is
not the primary culprit. Indeed, a recent field-theoretic
analysis paid closer attention to the ion-ion repulsions
[7]; but the subsequent ‘‘new mean-field’’ (NMF) results
still exhibit strong increases in T�c and an overly weak
variation of ��c: see the NMF plots in Figs. 1 and 2 [7].

Integral-equation theories are hardly better: see Figs. 1
and 2. The mean spherical approximation (MSA), like DH
theory, predicts no variation of T�c and ��c with z [8]. A
symmetric Poisson-Boltzmann (SPB) theory [9] does pre-
dict the correct falling and rising trends for T�c and ��c, but
the degree of variation is woefully inadequate. Moreover,
the modified Poisson-Boltzmann (MPB) approximation,
which the same authors [9] argue should be more reliable,
yields the wrong trend for T�c .
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FIG. 2. Reduced critical densities ��c�z�, for the CzAPM elec-
trolyte as in Fig. 1 (except that the NO plot is not rescaled).
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In order to better understand the effects of multivalency
we turn to recent calculations [4] based on the solvated ion-
cluster view [5] of the CzAPM near criticality that is
supported ‘‘pictorially‘‘ by simulations [2]. In brief, the
aim is to construct the free energy density, �f�T; f��g�, for
ionic species � consisting of (i) � and � monomers, i.e.,
isolated, n��n��1 single, unassociated ions of valency
z�� z and z���1; (ii) a set of associated primary clus-
ters, ��2;3; . . . , dimers, trimers, etc., each consisting of
one ‘‘central’’ � ion and m����1 ‘‘satellite’’ counter-
ions for a total of n��m��1 ions in a cluster of valency
z�� z�m�; up to (iii), the largest primary cluster, the
neutral or ‘‘molecular’’ �z�1�-mer of one z� ion and z
negative ions [4].

For each species, �f contains an ideal-gas term
�fId�T; ���, and an electrostatic term �fEl

� �T; f��g�, that,
following DH, incorporates cluster solvation in the par-
tially associated ionic fluid: this description is thus dubbed
‘‘DHBjCI’’ [4]. By adding a hard core (HC) free-volume
term, �fHC�f��g�, as in I, one may also account for those
excluded volume effects not already encompassed in the
basic solvation and association calculations [4,5], so gen-
erating a ‘‘DHBjCIHC’’ theory [4]. (The effective HC
virial coefficient Bbcc

� �4a3
�=33=2 has been adopted

[4,5].) Examination of Figs. 1 and 2 reveals that these
solvated ion-cluster theories are surprisingly successful.
Not only are both the downward trend in T�c �z� and the
rapid rise of ��c�z� well captured, but the quantitative
agreement with each of the MC estimates is significantly
better than achieved by other approaches.

One must recognize that (all) these theories are of mean-
field character: thus 5% to 15% overestimates of T�c �z� are
to be expected. Indeed, neglected fluctuations typically
depress Tc by such amounts and also flatten the coexistence
curves as seen in Fig. 3. Second, note that the hard-core
terms have a small effect on ��c�z� while reducing T�c �z�
values by only 5%–10%. Nevertheless, Fig. 3 reveals that
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FIG. 3. Coexistence curves predicted for z:1 equisized primi-
tive models by the DHBjCI and DHBjCIHC theories (solid and
dashed lines, respectively) together with Monte Carlo estimates
based on [10].
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TABLE II. Inverse screening length � and fractions, y� �
n�N�=N, of ions in clusters of n� ions at criticality, as percent-
ages, according to DHBjCIHC theory [4].

z �ca yc� yc� yc2 yc3 yc4

1 1:04 9:14 9:14 81:72 � � � � � �

2 1:37 1:31 10:33 15:43 72:93 � � �

3 1:57 0:34 8:04 3:32 11:13 77:17
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the liquid phases, especially for �� * 0:15, are sensitive to
�fHC: but, recall the discussion in I. In fact, the crucial
feature of DHBj-type theories—not represented in field-
theoretic or standard integral-equation treatments—is the
chemical equilibrium maintained between the cluster spe-
cies via the law of mass action:

�� � Km;z�T����m� exp	�Ex
� �m�

Ex
� ��Ex

� 
; (3)

for � � m� 1 � 2, with the excess chemical potentials
�Ex
� � ��@=@���	 �f

HC �
P
�

�fEl
� 
, while the association

constants are taken as [4,5]

Km;z�T;R� �
1

m!

Ym
i�1

Z R

a
dri exp

�
�

Em;z�frig�
kBT

�
; (4)

in which Em;z�frig� is the electrostatic energy of an isolated
�m� 1�-mer with satellite coordinates frig. The lower
limits a and the condition Em;z � �1 for jri � rjj< a
represent hard cores. Following Bjerrum [5], the necessary
cutoff radius R is chosen so that �@Km;z=@R� is minimal.
The resulting threefold K2;z integral is manageable but the
sixfold integral for K3;3 requires a Padé approximant study
of the low-T expansion cross-checked to a part in 103 by
MC evaluations [4]. It transpires, however, that T�c and ��c
are insensitive to the Km;z [4].

Lastly, one needs to account for the solvation of all the
ion species, �, by the free ions and charged clusters via the
electrostatic terms [4,5]

�f El
� �T; f��g� �

4���
DkBT

X1
l�0

u2l��a��

a2l�1
�

Xl
m��l

hjQ�
lmj

2i; (5)

where the u2l�x� are related to the spherical Bessel func-
tions kl�x� [4]; the second sum requires the cluster electric
multipole moments, Q�

l;m, thermally averaged [4] over the
ionic configurations that already enter in the Km;z�T�.

Finally, a� is an effective cluster diameter, i.e., the radius
of the approximating sphere (centered to minimize �fEl

� )
that substitutes for the true, thermally fluctuating, hard-
core exclusion domain: see I and [4]. One concludes, as in
I, that a most reasonable choice for a� is the average over
solid angle of the radial distance to the true exclusion
surface of the ground-state cluster: this yields a2 � �

3
4�

3
8 ln3 ’ 1:162�a, a3 � 1:250a, and a4 � 1:375a. For z � 1
the values of T�c and ��c vary by less than �2% over
plausible alternatives for a2 [4]; but the sensitivity to a3

and a4 for z � 2 and 3 is greater. As a result, this hard-to-
avoid approximation contributes significantly to the overall
quantitative uncertainties.

From the total free energy �f�T; f��g�, all thermody-
namic properties follow [4,5]. One may then conclude
from Figs. 1 and 2 that the principal defect of the field-
theoretic and integral-equation approaches is a failure to
account effectively for strong ionic association near criti-
cality. But can the actual trends of T�c and ��c with z be
demonstrated in a direct, transparent way? To answer,
consider the fractions, y� � n�N�=N, of ions bound in
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clusters of n� ions with �� � �y�=n���. The critical point
values that result from DHBjCIHC theory [4,11] are dis-
played in Table II. A significant fact is the rapid decrease in
yc�, the fraction of unassociated z� ions, from 9:1% to
1:3% to 0:3%. But more can be learned.

To understand the variation of T�c �z� let us regard the
electrolyte in the critical region as a mixture of clusters
with fixed mole fractions x� � �y�=n��=

P
��y�=n��. A

pair ��; �� will either mutually repel or attract with pair-
wise binding energies, say, "��. Thus unlike monomers
attract with "� � ". However, a dimer attracts only nega-
tive monomers with "2� � �z�

1
2�"=z; but repels all z� �

�2 ions. Two dimers repel when z � 3; but one has
"2;2=" ’ 0:586 and 0:345 for z � 1 and 2. And so on.

To estimate T�c for this mixture we adopt a van der Waals
approach as in [10(b)]. Thus, for the overall cluster density
�̂ ( � �

P
�y�=n�), we take p=�̂kBT ’ Z�B0�̂� � B1�T���̂

with Z�u� � 1� u� . . . in which the second virial coef-
ficient has been decomposed as B�T�� � B0 � B1�T��
where B0 (�b0a3, say) represents the hard-core repulsions
while B1�T

�� embodies the attractions. Solving @�p �
@2
�p � 0, as usual, yields ��c and B�c � B1�T�c �=b0a3. At

low T, which is relevant here, one has

B1�T
��  �

X
�;�

b��a
3x�x� exp�"���=T

��; (6)

where "��� � "��=", while b��a3 specifies the volume of
mutual attractions: this vanishes if � and � repel.

Now, the x�x� term dominates in B1�T
�� at low T with

corrections of relative order �x2
2=x�x��e

�0:414=T� for z � 1
and 2�x2=x��e�1=2zT� for z � 2. We may then calibrate
B1�T�c �=a3 by using pure DH theory (2) for which, since
association is not considered, x� � x� �

1
2 . Thereby we

obtain the EDH estimates

T�c �z� ’ 1=	16� j ln4xc��z�x
c
��z�j
; (7)

in which xc� / y
c
� and xc� / yc� follow from Table II.

The resulting predictions are listed in Table I under EDH.
In light of the heuristic nature of the arguments, they reflect
the trend of the MC and CI values surprisingly well.
Certainly the contention that association is a prime factor
is well confirmed. By replacing 16 by 20.27 (or 17.96) in
(7), and the factor 4 by 1=xc��1�x

c
��1�, one calibrates

B1�T
�
c � on the MC (or CI) values for the RPM. Column

EMC in Table I lists the MC-calibrated values: for z � 2
1-3
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and 3 these match the Monte Carlo estimates to within 1%
and 8%, respectively.

Now, for the critical density, the significance of ion
pairing is already clear in pure DHBj theory for the RPM
[5]. The heavy depletion of the free ions (which, in DHBj
theory, drive the transition alone) means that to reach
criticality the overall density � (��� � �� � 2�2) must
be increased until the DH criterion ��� � �

�
� � ��cDH �

1=64� is met: see (2). Does the same depletion-by-
association mechanism account for the z dependence of
��c�z�?

To progress, rewrite (1) generally as �2a2 � 4��y=T�,
with the effective, depleted ionic density

�y � ��
X
�

z2
�y��T; f��g�=zn�: (8)

If one accepts the DH criterion and uses Table II, the
estimates E�, in Table I, result. Although these fall short
of the Monte Carlo values by 74%, 54%, and 44% for z �
1–3, they reproduce the accelerating increase with z (by
factors 1:57, 1:63 vs 1:24, 1:34).

An alternative approach adopts the DH value �ca � 1:
see (2) but note from Table II that DHBjCIHC theory
implies that �ca rises from 1:04 for the RPM to 1:57 for
z � 3. Then using the EDH values for T�c , in Table I, leads
to the E� predictions for ��c�z�: these are all rather low but
the increases with z, by factors 1:47 and 1:55, again reflect
the correct behavior.

Finally, we note that the Galvani potential, ��, that
arises between coexisting phases in charge-asymmetric
fluids is readily calculated [4,6]. The predictions from
pure DH theory are shown dotted in Fig. 4: one finds
��DH / �1� z

�1�. The other plots result from the
DHBjCI and DHBjCIHC theories [4]. Surprisingly, the
calculations suggest no clear trend with z. It is natural to
conjecture that �� vanishes as G0�Tc � T��; moreover, to
13570
the extent that the expected mean-field value � � 1
2 is

realized, the present results support this.
In conclusion, we have elucidated the mechanisms

underlying how multivalency influences critical behavior.
Specifically, we have summarized briefly analytical calcu-
lations for 3:1, 2:1, and 1:1 equisized charged hard-sphere
fluids [4] that, for the first time, reasonably reflect the true
variation of critical temperatures and densities, T�c �z� and
��c�z� (as revealed by simulations [2]). On that basis,
supported by analysis that correlates T�c �z� and ��c�z� with
the increasingly depleted populations of free ions and
charged clusters as z increases, it is clear that recognizing
ionic association is inescapable for a successful theory.
Previous treatments [3,7–9], lacking allowance for ion
clusters fail seriously. The ion-cluster solvation theories
also yield quantitative results for the interphase Galvani
potentials.
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