How Multivalency Controls Ionic Criticality

Michael E. Fisher, Jean-Noël Aqua,* and Shubho Banerjee[†]

Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA

(Received 1 July 2005; published 21 September 2005)

To understand how multivalency affects criticality in z:1 ionic fluids, we report an ion-cluster association theory embodying ionic solvation and excluded volume for equisized hard-sphere models with z = 1-3. In accord with simulation but contradicting integral equation and field theories, the reduced critical temperature *falls* when z increases while the density ρ_c rises steeply. These trends can be explained semiquantitatively by noting that 80%–90% of the ions near T_c are bound in neutral or charged clusters, depleting the ionic strength. For $z \neq 1$, predicted interphase Galvani potentials vanish at T_c .

DOI: 10.1103/PhysRevLett.95.135701

PACS numbers: 64.60.Fr, 05.70.Fh, 61.20.Qg, 64.70.Fx

Multivalent ions play a significant role in condensedmatter, physicochemical, biophysical, and, via the plasma transition, astrophysical contexts [1]. The effects of multivalency are, however, often hard to comprehend. One central issue—relevant to electrolyte solutions, molten salts, liquid metals, and dense plasmas [1]—arises in Coulombdriven phase separation. The most basic model for such ionic fluids consists of $N = \rho V$ hard-core spherical ions of various species σ in a volume V of uniform dielectric constant D, with $N_{\sigma} = \rho_{\sigma} V$ ions of diameter a_{σ} carrying charges $q_{\sigma} = z_{\sigma}q_0$, where q_0 is an elementary charge. In the simple equisized z:1 charge-asymmetric primitive *models* (C₇APMs), on which we focus here, one has $\sigma =$ +, -, $a_{+} = a_{-}$, and $q_{+} = zq_{0}$, $q_{-} = -q_{0}$. The basic energy scale and associated reduced temperature and density are then $\varepsilon = zq_0^2/Da$, $T^* = k_B T/\varepsilon$, $\rho^* = \rho a^3$.

Monte Carlo (MC) simulations [2] show that (at least for $z \leq 5$) the C_zAPMs exhibit "gas-liquid" phase separation; furthermore, the critical parameters, $T_c^*(z)$ and $\rho_c^*(z)$, are found to reasonable precision: see the open circles in Figs. 1 and 2 and Table I. One observes that $T_c^*(z)$ falls with increasing z, while $\rho_c^*(z)$ rises sharply. But we ask: How can these trends be understood? Or accounted for semiquantitatively? To address this issue, we review briefly previous work, including a pioneering field-theoretic attack [3], and then report on recent, rather substantial calculations [4] which we believe provide significant insight and a base on which, as we then show, an effective heuristic analysis can be built. This new study [4] extends an earlier analysis I [5] for the symmetric z = 1 restricted primitive model (RPM) that was founded on the original Debye-Hückel (DH) approach but incorporated (i) Bjerrum ion pairs and (ii) their solvation in the residual ionic fluid. For z = 2 and 3 larger ion clusters, trimers and tetramers, must be included [4]; but then explicit results are also obtained for the interphase Galvani potential [6] that appears in any two-phase nonsymmetric ionic system [4,6].

The field-theoretic analysis of Netz and Orland (NO) [3] was designed to address z:1 ionic fluids and colloids $(z \gg 1)$ and to include correlations in a systematic manner. The Coulomb interaction, $q_{\sigma}q_{\tau}/r$, was transformed to

yield a functional integral over an auxiliary potential $\phi(\mathbf{r})$. At the $\langle \phi^2 \rangle$ level the DH effective interaction, $v_{\text{DH}} \propto e^{-\kappa r}/r$, is captured with

$$\kappa^2(T;\{\rho_\sigma\}) = 4\pi (q_0^2/Dk_BT) \sum_{\sigma} z_{\sigma}^2 \rho_{\sigma}.$$
 (1)

The reduced free energy density, $\bar{f}(T; \rho) \equiv -F/Vk_BT$, was computed to eighth order in ϕ but a momentum cutoff is essential: NO adopted $|\mathbf{k}_{\Lambda}| = 2\pi/a$, thereby incorporating the ionic diameter and, for the z:1 case, leading to $\kappa^2 a^2 = 4\pi\rho^*/T^*$. Since this treatment of the hard cores is approximate, accurate predictions for $T_c^*(z)$ and $\rho_c^*(z)$ are not expected. Nevertheless, one might anticipate reliable *trends* when z varies in contrast to DH theory, which yields *no dependence* on z with (after I)

FIG. 1. Reduced critical temperatures for z:1 chargeasymmetric equisized hard-core primitive model electrolytes (C_z APMs) according to Monte Carlo (MC) simulations [2]; Debye-Hückel (DH) theory; field-theoretic approaches: NO [3] (with a factor $\frac{1}{10}$) and a "new mean-field theory" (NMF) [7]; approximate integral equations: the mean spherical approximation (MSA) [8], and the symmetric (SPB) and modified (MPB) Poisson-Boltzmann theories [9]; and the current solvated ioncluster theory *with* (DHBjCIHC) and *without* (DHBjCI) hardcore terms [4].

TABLE I. Monte Carlo (MC) estimates [2] for the reduced critical parameters for *z*:1 equisized hard-sphere electrolytes; values calculated from the current solvated ion-cluster theory with hard-core terms (CI) [4]; and approximate estimates $(E_{\text{DH}}, \ldots, E_{\kappa})$ based on ion-cluster statistics: see text.

	Critical temp.		$10^2 T_c^*(z)$		Critical density		$10^2 \rho_c^*(z)$	
z	MC	CI	$E_{\rm DH}$	$E_{\rm MC}$	MC	CI	$E_{ ho}$	E_{κ}
1	4.93 ₃	5.569	5.45	4.93 ₅	7.50	2.614	2.72	2.37
2	4.70	4.907	5.11	4.65	9.3	6.261	4.27	3.49
3	4.10	4.334	4.85	4.44	12.5	11.90	6.96	5.40

DH:
$$\kappa_c a = 1$$
, $T_c^* = 1/16$, $\rho_c^* = 1/64\pi \simeq 0.005$.
(2)

In fact, as NO report, "the [predicted] deviations from DH theory are pronounced" for z > 1: see Figs. 1 and 2.

But evidently the NO results are not merely quantitatively wrong; the *trends* are quite incorrect since T_c^* is asserted to rise rapidly (instead of falling) while ρ_c^* falls sharply for small z - 1 (instead of rising) and *then* increases but much too slowly. While one may blame the approximate treatment of the hard cores, we believe this is *not* the primary culprit. Indeed, a recent field-theoretic analysis paid closer attention to the ion-ion repulsions [7]; but the subsequent "new mean-field" (NMF) results still exhibit strong increases in T_c^* and an overly weak variation of ρ_c^* : see the NMF plots in Figs. 1 and 2 [7].

Integral-equation theories are hardly better: see Figs. 1 and 2. The mean spherical approximation (MSA), like DH theory, predicts no variation of T_c^* and ρ_c^* with z [8]. A symmetric Poisson-Boltzmann (SPB) theory [9] does predict the correct falling and rising trends for T_c^* and ρ_c^* , but the degree of variation is woefully inadequate. Moreover, the modified Poisson-Boltzmann (MPB) approximation, which the same authors [9] argue should be more reliable, yields the wrong trend for T_c^* .

FIG. 2. Reduced critical densities $\rho_c^*(z)$, for the C_zAPM electrolyte as in Fig. 1 (except that the NO plot is not rescaled).

In order to better understand the effects of multivalency we turn to recent calculations [4] based on the *solvated ioncluster* view [5] of the C_zAPM near criticality that is supported "pictorially" by simulations [2]. In brief, the aim is to construct the free energy density, $\bar{f}(T; \{\rho_{\sigma}\})$, for ionic species σ consisting of (i) + and - *monomers*, i.e., isolated, $n_{+} = n_{-} = 1$ single, unassociated ions of valency $z_{+} = z$ and $z_{-} = -1$; (ii) a set of associated *primary* clusters, $\sigma = 2, 3, ...,$ dimers, trimers, etc., each consisting of one "central" + ion and $m_{\sigma} = \sigma - 1$ "satellite" counterions for a total of $n_{\sigma} = m_{\sigma} + 1$ ions in a cluster of valency $z_{\sigma} = z - m_{\sigma}$; up to (iii), the largest primary cluster, the *neutral* or "molecular" (z + 1)-mer of one z_{+} ion and znegative ions [4].

For each species, \overline{f} contains an ideal-gas term $\bar{f}^{\text{Id}}(T, \rho_{\sigma})$, and an electrostatic term $\bar{f}^{\text{El}}_{\sigma}(T, \{\rho_{\tau}\})$, that, following DH, incorporates cluster solvation in the partially associated *ionic fluid:* this description is thus dubbed "DHBjCI" [4]. By adding a hard core (HC) free-volume term, $\bar{f}^{HC}(\{\rho_{\sigma}\})$, as in **I**, one may also account for those excluded volume effects not *already* encompassed in the basic solvation and association calculations [4,5], so generating a "DHBjCIHC" theory [4]. (The effective HC virial coefficient $B_{\sigma}^{\rm bcc} = 4a_{\sigma}^3/3^{3/2}$ has been adopted [4,5].) Examination of Figs. 1 and 2 reveals that these solvated ion-cluster theories are surprisingly successful. Not only are *both* the downward trend in $T_c^*(z)$ and the rapid rise of $\rho_c^*(z)$ well captured, but the *quantitative* agreement with each of the MC estimates is significantly better than achieved by other approaches.

One must recognize that (all) these theories are of meanfield character: thus 5% to 15% overestimates of $T_c^*(z)$ are to be expected. Indeed, neglected fluctuations typically depress T_c by such amounts and also flatten the *coexistence curves* as seen in Fig. 3. Second, note that the hard-core terms have a small effect on $\rho_c^*(z)$ while reducing $T_c^*(z)$ values by only 5%–10%. Nevertheless, Fig. 3 reveals that

FIG. 3. Coexistence curves predicted for z:1 equisized primitive models by the DHBjCI and DHBjCIHC theories (solid and dashed lines, respectively) together with Monte Carlo estimates based on [10].

the liquid phases, especially for $\rho^* \gtrsim 0.15$, are sensitive to $\bar{f}^{\rm HC}$: but, recall the discussion in **I**. In fact, the crucial feature of DHBj-type theories—not represented in field-theoretic or standard integral-equation treatments—is the *chemical equilibrium* maintained between the cluster species via the law of mass action:

$$\rho_{\sigma} = K_{m,z}(T)\rho_{+}\rho_{-}^{m}\exp[\mu_{+}^{\text{Ex}} + m\mu_{-}^{\text{Ex}} - \mu_{\sigma}^{\text{Ex}}], \quad (3)$$

for $\sigma = m + 1 \ge 2$, with the excess chemical potentials $\mu_{\sigma}^{\text{Ex}} = -(\partial/\partial \rho_{\sigma})[\bar{f}^{\text{HC}} + \sum_{\sigma} \bar{f}_{\sigma}^{\text{El}}]$, while the association constants are taken as [4,5]

$$K_{m,z}(T; \mathbf{R}) = \frac{1}{m!} \prod_{i=1}^{m} \int_{a}^{\mathbf{R}} d\mathbf{r}_{i} \exp\left(-\frac{\mathcal{E}_{m,z}(\{\mathbf{r}_{i}\})}{k_{B}T}\right), \quad (4)$$

in which $\mathcal{E}_{m,z}({\mathbf{r}_i})$ is the electrostatic energy of an isolated (m + 1)-mer with satellite coordinates ${\mathbf{r}_i}$. The lower limits *a* and the condition $\mathcal{E}_{m,z} = +\infty$ for $|\mathbf{r}_i - \mathbf{r}_j| < a$ represent hard cores. Following Bjerrum [5], the necessary cutoff radius *R* is chosen so that $(\partial K_{m,z}/\partial R)$ is minimal. The resulting threefold $K_{2,z}$ integral is manageable but the sixfold integral for $K_{3,3}$ requires a Padé approximant study of the low-*T* expansion cross-checked to a part in 10³ by MC evaluations [4]. It transpires, however, that T_c^* and ρ_c^* are *insensitive* to the $K_{m,z}$ [4].

Lastly, one needs to account for the solvation of *all* the ion species, σ , by the free ions and charged clusters via the electrostatic terms [4,5]

$$\bar{f}_{\sigma}^{\text{El}}(T;\{\rho_{\tau}\}) = \frac{4\pi\rho_{\sigma}}{Dk_{B}T} \sum_{l=0}^{\infty} \frac{u_{2l}(\kappa a_{\sigma})}{a_{\sigma}^{2l+1}} \sum_{m=-l}^{l} \langle |Q_{lm}^{\sigma}|^{2} \rangle, \quad (5)$$

where the $u_{2l}(x)$ are related to the spherical Bessel functions $k_l(x)$ [4]; the second sum requires the cluster electric multipole moments, $Q_{l,m}^{\sigma}$, thermally averaged [4] over the ionic configurations that already enter in the $K_{m,z}(T)$.

Finally, a_{σ} is an *effective cluster diameter*, i.e., the radius of the approximating sphere (centered to minimize $\bar{f}_{\sigma}^{\text{El}}$) that substitutes for the true, thermally fluctuating, hardcore exclusion domain: see I and [4]. One concludes, as in I, that a most reasonable choice for a_{σ} is the average over solid angle of the radial distance to the true exclusion surface of the ground-state cluster: this yields $a_2 = (\frac{3}{4} + \frac{3}{8} \ln 3 \approx 1.162)a, a_3 = 1.250a$, and $a_4 = 1.375a$. For z = 1the values of T_c^* and ρ_c^* vary by less than $\pm 2\%$ over plausible alternatives for a_2 [4]; but the sensitivity to a_3 and a_4 for z = 2 and 3 is greater. As a result, this hard-toavoid approximation contributes significantly to the overall quantitative uncertainties.

From the total free energy $\bar{f}(T, \{\rho_{\sigma}\})$, all thermodynamic properties follow [4,5]. One may then conclude from Figs. 1 and 2 that the principal defect of the fieldtheoretic and integral-equation approaches is a failure to account effectively for strong ionic association near criticality. But can the actual *trends* of T_c^* and ρ_c^* with z be demonstrated in a direct, transparent way? To answer, consider the *fractions*, $y_{\sigma} = n_{\sigma}N_{\sigma}/N$, of ions bound in clusters of n_{σ} ions with $\rho_{\sigma} = (y_{\sigma}/n_{\sigma})\rho$. The critical point values that result from DHBjCIHC theory [4,11] are displayed in Table II. A significant fact is the rapid decrease in y_{+}^{c} , the fraction of unassociated z_{+} ions, from 9.1% to 1.3% to 0.3%. But more can be learned.

To understand the variation of $T_c^*(z)$ let us regard the electrolyte in the critical region as a mixture of clusters with fixed mole fractions $x_{\sigma} = (y_{\sigma}/n_{\sigma})/\sum_{\tau}(y_{\tau}/n_{\tau})$. A pair (σ, τ) will either mutually repel *or* attract with pairwise binding energies, say, $\varepsilon_{\sigma\tau}$. Thus unlike monomers attract with $\varepsilon_{\pm} = \varepsilon$. However, a *dimer* attracts only *negative monomers* with $\varepsilon_{2-} = (z - \frac{1}{2})\varepsilon/z$; but repels all $z_+ \ge +2$ ions. Two dimers repel when $z \ge 3$; but one has $\varepsilon_{2,2}/\varepsilon \simeq 0.586$ and 0.345 for z = 1 and 2. And so on.

To estimate T_c^* for this mixture we adopt a van der Waals approach as in [10(b)]. Thus, for the overall cluster density $\hat{\rho}$ ($=\rho\sum_{\sigma}y_{\sigma}/n_{\sigma}$), we take $p/\hat{\rho}k_BT \simeq Z(B_0\hat{\rho}) + B_1(T^*)\hat{\rho}$ with Z(u) = 1 + u + ... in which the second virial coefficient has been decomposed as $B(T^*) = B_0 + B_1(T^*)$ where B_0 ($=b_0a^3$, say) represents the hard-core repulsions while $B_1(T^*)$ embodies the attractions. Solving $\partial_{\rho}p =$ $\partial_{\rho}^2 p = 0$, as usual, yields ρ_c^* and $B_c^* \equiv B_1(T_c^*)/b_0a^3$. At low *T*, which is relevant here, one has

$$B_1(T^*) \approx -\sum_{\sigma,\tau} b_{\sigma\tau} a^3 x_{\sigma} x_{\tau} \exp(\varepsilon_{\sigma\tau}^*/T^*), \qquad (6)$$

where $\varepsilon_{\sigma\tau}^* \equiv \varepsilon_{\sigma\tau}/\varepsilon$, while $b_{\sigma\tau}a^3$ specifies the volume of mutual attractions: this *vanishes* if σ and τ repel.

Now, the x_+x_- term dominates in $B_1(T^*)$ at low *T* with corrections of relative order $(x_2^2/x_+x_-)e^{-0.414/T^*}$ for z = 1 and $2(x_2/x_+)e^{-1/2zT^*}$ for $z \ge 2$. We may then *calibrate* $B_1(T_c^*)/a^3$ by using pure DH theory (2) for which, since association is not considered, $x_+ = x_- = \frac{1}{2}$. Thereby we obtain the E_{DH} estimates

$$T_c^*(z) \simeq 1/[16 + |\ln 4x_+^c(z)x_-^c(z)|], \tag{7}$$

in which $x_{+}^{c} \propto y_{+}^{c}$ and $x_{-}^{c} \propto y_{-}^{c}$ follow from Table II.

The resulting predictions are listed in Table I under $E_{\rm DH}$. In light of the heuristic nature of the arguments, they reflect the trend of the MC and CI values surprisingly well. Certainly the contention that association is a prime factor is well confirmed. By replacing 16 by 20.27 (or 17.96) in (7), and the factor 4 by $1/x_{+}^{c}(1)x_{-}^{c}(1)$, one calibrates $B_{1}(T_{c}^{*})$ on the MC (or CI) values for the RPM. Column $E_{\rm MC}$ in Table I lists the MC-calibrated values: for z = 2

TABLE II. Inverse screening length κ and fractions, $y_{\sigma} = n_{\sigma}N_{\sigma}/N$, of ions in clusters of n_{σ} ions at criticality, as percentages, according to DHBjCIHC theory [4].

z	$\kappa_c a$	y^c_+	y^c	y_2^c	y_3^c	y_4^c
1	1.04	9.14	9.14	81.72	• • •	
2	1.37	1.31	10.33	15.43	72.93	
3	1.57	0.34	8.04	3.32	11.13	77.17

FIG. 4. Reduced Galvani potentials, $\Delta \bar{\phi} = q_0 \Delta \phi / k_B T$, vs T/T_c for z:1 electrolytes according to pure DH theory (dotted lines) and DHBjCI(HC) theories: solid (dashed) plots.

and 3 these match the Monte Carlo estimates to within 1% and 8%, respectively.

Now, for the critical density, the significance of ion pairing is already clear in *pure* DHBj theory for the RPM [5]. The heavy depletion of the free ions (which, in DHBj theory, drive the transition *alone*) means that to reach criticality the overall density $\rho (= \rho_+ + \rho_- + 2\rho_2)$ must be increased until the DH criterion $\rho_+^* + \rho_-^* = \rho_{\text{DH}}^{*c} = 1/64\pi$ is met: see (2). Does the same depletion-by-association mechanism account for the *z* dependence of $\rho_c^*(z)$?

To progress, rewrite (1) generally as $\kappa^2 a^2 = 4\pi \rho^{\dagger}/T^*$, with the *effective*, depleted ionic density

$$\rho^{\dagger} \equiv \rho^* \sum_{\sigma} z_{\sigma}^2 y_{\sigma}(T; \{\rho_{\sigma}\}) / z n_{\sigma}.$$
(8)

If one accepts the DH criterion and uses Table II, the estimates E_{ρ} , in Table I, result. Although these fall short of the Monte Carlo values by 74%, 54%, and 44% for z = 1-3, they reproduce the accelerating increase with z (by factors 1.57, 1.63 vs 1.24, 1.34).

An alternative approach adopts the DH value $\kappa_c a = 1$: see (2) but note from Table II that DHBjCIHC theory implies that $\kappa_c a$ rises from 1.04 for the RPM to 1.57 for z = 3. Then using the E_{DH} values for T_c^* , in Table I, leads to the E_{κ} predictions for $\rho_c^*(z)$: these are all rather low but the increases with z, by factors 1.47 and 1.55, again reflect the correct behavior.

Finally, we note that the Galvani potential, $\Delta \phi$, that arises between coexisting phases in charge-asymmetric fluids is readily calculated [4,6]. The predictions from pure DH theory are shown dotted in Fig. 4: one finds $\Delta \phi_{\rm DH} \propto (1 - z^{-1})$. The other plots result from the DHBjCI and DHBjCIHC theories [4]. Surprisingly, the calculations suggest no clear trend with z. It is natural to conjecture that $\Delta \phi$ vanishes as $G_0(T_c - T)^\beta$; moreover, to the extent that the expected mean-field value $\beta = \frac{1}{2}$ is realized, the present results support this.

In conclusion, we have elucidated the mechanisms underlying how multivalency influences critical behavior. Specifically, we have summarized briefly analytical calculations for 3:1, 2:1, and 1:1 equisized charged hard-sphere fluids [4] that, for the first time, reasonably reflect the true variation of critical temperatures and densities, $T_c^*(z)$ and $\rho_c^*(z)$ (as revealed by simulations [2]). On that basis, supported by analysis that correlates $T_c^*(z)$ and $\rho_c^*(z)$ with the increasingly depleted populations of free ions and charged clusters as z increases, it is clear that recognizing ionic association is inescapable for a successful theory. Previous treatments [3,7–9], lacking allowance for ion clusters fail seriously. The ion-cluster solvation theories also yield quantitative results for the interphase Galvani potentials.

National Science Foundation support via Grants No. CHE 99-81772 and No. CHE 03-01101 is gratefully acknowledged.

*Present address: École normale supérieure de Lyon, 69364, Lyon, France.

[†]Present address: Department of Physics, Rhodes College, Memphis, TN 38112, USA.

- (a) See articles in *Elementary Processes in Dense Plamas*, edited by S. Ichimaru and S. Ogata (Addison-Wesley, New York, 1995); (b) A. Yu. Grosberg *et al.*, Rev. Mod. Phys. **74**, 329 (2002); (c) H. Weingärtner and W. Schröer, Adv. Chem. Phys. **116**, 1 (2001); (d) Y. Levin, Rep. Prog. Phys. **65**, 1577 (2002).
- [2] (a) P.J. Camp and G.N. Patey, J. Chem. Phys. 111, 9000 (1999); (b) Q. Yan and J.J. de Pablo, Phys. Rev. Lett. 86, 2054 (2001); (c) A.Z. Panagiotopoulos and M.E. Fisher, Phys. Rev. Lett. 88, 045701 (2002).
- [3] R. R. Netz and H. Orland, Europhys. Lett. 45, 726 (1999).
- [4] J.-N. Aqua, S. Banerjee, and M.E. Fisher, cond-mat/ 0410692 [Phys. Rev. E (to be published)].
- [5] (a) M.E. Fisher and Y. Levin, Phys. Rev. Lett. 71, 3826 (1993); (b) Y. Levin and M.E. Fisher, Physica (Amsterdam) 225A, 164 (1996); to be denoted I.
- [6] M.J. Sparnaay, *The Electrical Double Layer* (Pergamon Press, Oxford, 1972), pp. 4, 338; P.B. Warren, J. Chem. Phys. **112**, 4683 (2000); I. Iosilevski and A. Chigvintsev, J. Phys. IV (France) **10**, Pr5-451 (2000).
- [7] J.-M. Caillol, Mol. Phys. 103, 1271 (2005).
- [8] E. Waisman and J. L. Lebowitz, J. Chem. Phys. 56, 3086 (1972); E. Gonzalez-Tovar, Mol. Phys. 97, 1203 (1999).
- [9] A.K. Sabir *et al.*, Mol. Phys. **93**, 405 (1998); C.W. Outhwaite, Condens. Matter Phys. **7**, 719 (2004).
- [10] (a) Y.C. Kim, M.E. Fisher, and E. Luijten, Phys. Rev. Lett. 91, 065701 (2003); (b) Y.C. Kim and M.E. Fisher, Phys. Rev. Lett. 92, 185703 (2004).
- [11] While the y_{σ}^{c} are *not* very sensitive to the a_{σ} , they cannot be determined unequivocally via simulations.