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Observation of a Metallic Superfluid in a Numerical Experiment
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We report the observation, in Monte Carlo simulations, of a novel type of quantum ordered state: the
metallic superfluid. The metallic superfluid features Ohmic resistance to counterflows of protons and
electrons, while featuring dissipationless coflows of electrons and protons. One of the candidates for a
physical realization of this remarkable state of matter is hydrogen or its isotopes under high compression.
This adds another potential candidate to the presently known quantum dissipationless states, namely,
superconductors, superfluid liquids and vapors, and supersolids.

DOI: 10.1103/PhysRevLett.95.135301 PACS numbers: 67.90.+z, 11.15.Ha, 71.10.Hf, 74.10.+v
At low temperatures, fluids become dominated by the
wavelike nature of their constituent particles when the
thermal de Broglie wavelength exceeds the interparticle
separation. Such quantum fluids usually feature supercon-
ductivity or superfluidity, which, however, may be de-
stroyed by topological line defects (vortices) threading
the entire system. Vortices may be induced by a magnetic
field or rotation [1], or by thermally excited transverse
phase fluctuations of the macroscopic wave function of
superconductors and superfluids [2–4]. In a system of
rapidly growing interest, a two-component superconductor
[5], vortices yield dramatic physical consequences. Here
we report the first observations, in a numerical experiment,
of a novel type of quantum fluid originating in aggregate
states of vortex matter. Increasing temperature, a compos-
ite vortex lattice melts into a composite vortex liquid,
whence superconductivity is lost while superfluidity is
retained, yielding a metallic (Ohmic) superfluid. At higher
temperature, another unusual transition occurs where the
composite vortex liquid ‘‘ionizes’’ into a ‘‘plasma’’ of
constituent vortices, destroying superfluidity.

Recently, there has been considerable interest in theories
of superconductors with several components coupled by a
magnetic field, but with no possibility of Josephson tun-
neling of one component into another. This is predicted to
occur in a wide variety of physical systems, most notably in
condensed matter such as hydrogenic atoms subjected to
extreme pressure [5–10] or effective theories of easy-plane
quantum antiferromagnets [11]. Renewed interest in the
long sought liquid metallic hydrogen (LMH) is due to
recent ab initio calculations [12] along with a breakthrough
in synthesis of ultrahard artificial diamonds, essential for
obtaining the required extreme pressures in anvil cells [13].
These facts, along with a recent measurement of an un-
usually low melting temperature of dense Na [14], strongly
hint at a realization of LMH in the not too distant future.
Thus, understanding the superconducting properties of this
system is important, since magnetic field experiments can
be conducted in high pressure anvil cells, possibly con-
firming the realization of this novel state of matter in a
terrestrial laboratory. It is commonly accepted that LMH is
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abundant in the interior of Jupiter and Saturn and quite
possibly also present in some of the known 200 extrasolar
giant planets [15]. In these cases, however, LMH is con-
jectured to exist in the classical metallic regime at several
thousand degrees Kelvin. In contrast, the state projected to
exist in Ref. [6] is a ground state quantum fluid, and is the
one we focus on in this Letter.

Realization of LMH could well constitute the next mile-
stone in quantum fluids. It is projected to feature Cooper
pairs of both electrons and protons at low temperatures [6].
The resulting quantum fluid differs radically from previ-
ously known quantum fluids, in that its physical properties
cannot be classified exclusively as a superconductor or a
superfluid [5]. Remarkably, such a system features both
superconductivity and superfluidity, which appear as col-
lective phenomena corresponding to coflows and counter-
flows of two species of Cooper pairs, with a complicated
interplay between them. Thus, LMH has been conjectured
to sustain phase transitions connecting a superconducting
and superfluid state to a metallic state featuring a super-
fluid mode [5], or to a superconducting state with no
superfluid mode.

The transition from a state featuring superconductivity
and superfluidity to a state where superfluidity is lost and
superconductivity is retained has recently been observed in
a large-scale Monte Carlo (MC) simulation [10]. However,
the remarkable possibility of a transition from a ‘‘compos-
ite’’ vortex lattice (superconducting state where vortex
matter forms a solid) to a ‘‘composite vortex liquid’’
(metallic superfluid state of the system) along with a sub-
sequent transition from a composite vortex liquid to ‘‘vor-
tex line plasma’’ has thus far not been confirmed. It is the
purpose of this Letter to report an observation of the
metallic superfluid, not dealt with in simulations previ-
ously, in a numerical experiment.

The superconducting phase of LMH is given by the
Ginzburg-Landau model with two scalar fields ��1�0 �r�
and ��2�0 �r� describing superconducting condensates of
protons and electrons, respectively. It is defined via the
energy density
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FIG. 1 (color online). Results of numerical experiments on a
two-component vortex system, for j �1�j2 � 0:5, j �2�j2 � 1:0,
and e � 1:0. (a) Structure functions for protonic S�1��K� (red or
light gray) and electronic S�2��K� (blue or dark gray) vortices, for
K � ��=4; 2�=5�. They drop to zero discontinuously at TM
where the system loses its superconducting properties, but re-
tains superfluidity, as evidenced by a finite helicity modulus �x
(black line). �x serves as an order parameter in the vortex-liquid
phase, dropping to zero at TC. (b) Nco (green or light gray) is
finite across the melting transition, but drops continuously to a
small value at TC, where it has a kink. At TC, the specific heat CV
has an anomaly.
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Here, M�1� and M�2� are the masses of the condensates, the
covariant derivative is given by D � r	 ieA�r�, and
V�fj����0 �r�jg� is the potential term. The particular form
of V�fj����0 �r�jg� is not essential for the large-scale physics
we address, but its dependence only on j����0 j reflects the
fact that Cooper pairs of electrons cannot be converted into
Cooper pairs of protons, and vice versa. For the issues
discussed in this Letter, it suffices to work in the phase
only approximation ����0 �r� � j�

���
0 j exp�i�����r��, where

j����0 j is treated as a constant [10]. In LMH, the two order
parameters correspond to electronic and protonic Cooper
pairs. Moreover, Eq. (1) may be rewritten as follows
[5,7,8,10]:
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1
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�1�j2r��1� � j �2�j2r��2� 	 e�2A�2

�
1
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1

2
�r�A�2;

(2)

where j ���j2 � j����0 j
2=M��� and �2 � j �1�j2 � j �2�j2.

The neutral and charged modes, described by the second
and first term in Eq. (2), are explicitly identified.

The topological objects of Eq. (1) are vortices of type 1
and type 2 defined by a 2� winding in ��1� and ��2�,
respectively. The interaction potential between these vor-
tices is a superposition of a Coulomb potential and a
Yukawa potential, arising out of the neutral and the
charged mode, respectively. (For a derivation of the for-
mulas for the vortex interaction, see Ref. [10].) The energy
of a vortex associated with 
2� winding in ��1� 	 ��2� is
logarithmically divergent. As the neutral mode tends to
lockr��1� tor��2�, in order to minimize the second term in
Eq. (2), the vortices of type 1 and type 2 pair up into a
composite vortex for which r���1� 	 ��2�� � 0. Therefore,
a composite vortex is an object where a type-1 and a type-2
vortex are cocentered and codirected in space, and the
Coulomb part of the pair potential exactly cancels. The
screened potentials add, but the associated overall energy
is finite [5,8–10]. In the presence of an externally applied
magnetic field, the ground state of the system is a lattice of
cocentered vortices of type 1 and type 2, a composite
vortex lattice.

We have performed MC simulations on Eq. (1) at finite
temperature using local Metropolis updating on the fields
��1��r�, ��2��r�, and A�r�. The system size we have used is
L� L� L, with L � 120. The coupling constants inves-
tigated are j �1�j2 � 0:5, j �2�j2 � 1:0, and e � 1:0, and
the external magnetic field is B � r�A�r� � �0; 0; 2�f�
with f � 1=20. Thus, there are 20 plaquettes in the xy
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plane for each field-induced vortex. The external magnetic
field is imposed by splitting A�r� � AF�r� �A0�r�, where
AF is free to fluctuate subject to periodic boundary con-
ditions and A0 � �0; 2�xf; 0� is kept fixed. We have
chosen the amplitude ratios j �2�j2=j �1�j2 � 2:0 for nu-
merical convenience. We emphasize that the results in this
Letter are dictated by symmetry, and the physical picture
we present will thus be representative also for LMH, where
j �2�j2=j �1�j2 � 103.

To find the lattice ordering of vortices, we compute the
planar structure function S����k?� of the local vorticity
n����r�, defined by �� ������ 	 eA� � 2�n����r�, given
by S����k?� � hj

P
rn
���
z �r�eik?�r?j2i=�fL3�2. Here, �� is

the lattice difference operator, ���
��� 	 eA� 2 �0; 2�i, r

runs over the possible positions of the vortices, and k? and
r? are perpendicular to B. If vortices form a lattice,
S����k?� will exhibit a sixfold symmetric Bragg structure
and feature a ring structure in the vortex-liquid phase.

The MC results are given in Fig. 1, showing the structure
function S�1��K� (red or light gray) for protonic vortices,
and S�2��K� (blue or dark gray) for electronic vortices,
where K � ��=4; 2�=5� is a Bragg vector. In the low-
temperature regime, both functions are finite, but decrease
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gradually as the temperature is increased. At TM, S�1��K�
and S�2��K� vanish at the same temperature even though the
ratio of the bare stiffnesses of the condensates is 2.0.
Moreover, both structure functions vanish discontinuously,
the hallmark of a first-order melting transition of the
composite vortex lattice.

To probe the splitting of the cocentered vortices into
constituent vortices, we compute the vortex cocentricity,
defined as Nco � N���co 	 N

�	�
co , where N�
�co �

P
rjn
�2�
z �r�j�n�1�z �r�;
n�2�z �r�=

P
rjn
�2�
z �r�j and �i;j is unity if i �

j and zero otherwise. Therefore, Nco is the fraction of type-
2 vortex segments that are cocentered and codirected with
type-1 segments. We find that passing through the first-
order melting transition rendersNco unaffected, whence we
conclude that the observed transition is a melting of a
composite vortex lattice.

In one-component type-II superconductors, melting of
the vortex lattice amounts to a complete destruction of
dissipationless currents [4]. To follow the fate of the su-
perfluid mode of the two-component system in the vortex-
liquid state, we measure the ordering in ��r� � ��1��r� 	
��2��r�. To probe the global phase coherence in this vari-
a b

FIG. 2 (color online). Snapshots of the states of vortex matter
simulations, taken at three different temperatures: T � 0:50 (T <
snapshots are extracted from a small segment (15� 15� 15) of the
view of the vortices, as well as the protonic structure function S�1��
S�2��k?� (blue, small lower box). (a) For T < TM the vortices are arra
(thin red) vortices perform only small excursions from each ot
characteristic of a vortex lattice. (b) For TM < T < TC the compos
the structure functions. The electronic and protonic vortices perfo
cocentered. This is the superfluid metallic phase in which codirected
without dissipation. (c) For T > TC the superfluidity is lost and the
proliferation of the protonic vortices is reflected in the increase in t

13530
able, we consider the helicity modulus ��, equivalently
the superfluid density, given by �� � �hci 	 �hs2i�=L3,
where c �

P
r cos�����r��, s �

P
r sin�����r��, and � �

�j �1�j2j �2�j2=2�2. When the composite vortex lattice
melts, destroying superconductivity [4], the superfluid den-
sity remains unaffected (cf. Fig. 1). Hence, this transition
separates a superconducting superfluid from a metallic
superfluid state.

Thus, we have identified a transition from a composite
vortex lattice into a composite vortex liquid. Increasing the
temperature further, we find a phase transition between the
composite vortex liquid and the ‘‘ionized vortices’’ plasma,
as evidenced by the vanishing of the superfluid density �x
(cf. Fig. 1). We observe that this transition is accompanied
by a pronounced anomaly in the specific heat CV , indicat-
ing that this is a critical phenomenon. This is corroborated
by the following physical argument. The liquid state of
vortices in an ordinary superconductor is a state where
translational symmetry is restored and superconductivity
is lost [4]. In the composite vortex-liquid state, every
electronic vortex is accompanied by a protonic vortex
performing only finite excursions away from the electronic
vortex line. Therefore, for every plane slicing an electronic
c

and momentum space structure functions generated from MC
TM), T � 0:72 (TM < T < TC), and T � 0:86 (T > TC). The
vortex system. Each thick frame contains a side view and a top

k?� (red, small upper box) and the electronic structure function
nged in a cocentered lattice. Electronic (thick blue) and protonic

her. Both structure functions exhibit a sixfold Bragg pattern
ite vortex lattice has melted as illustrated by the ring pattern in
rm stronger excursions from each other but essentially remain

currents of protonic and electronic Cooper pairs can propagate
electronic and protonic vortices are no longer cocentered. The

he uniform background of the protonic structure function.

1-3



PRL 95, 135301 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
23 SEPTEMBER 2005
vortex in a direction perpendicular to the magnetic field, it
is possible to identify a finite length closed contour which
also encompasses an accompanying codirected protonic
vortex. Along such a contour, there is no nontrivial wind-
ing in the phase-difference �. Therefore, melting of the
composite vortex lattice into a composite vortex liquid
does not restore the broken global U�1� symmetry associ-
ated with �. On the other hand, in the vortex plasma state
one cannot find a protonic vortex accompanying every
electronic vortex, implying a disordering of �. Hence,
the associated global U�1� symmetry is restored during
the ‘‘vortex ionization’’ transition taking place within the
vortex liquid, and it is therefore in the 3Dxy universality
class.

To gain further insight, we have also extracted vortices
and visualized snapshots of configurations of vortex matter
in small segments of the system. The results are shown in
Fig. 2.

Figure 2(a) shows the side and top views of vortex
matter at a small but finite temperature when two species
of vortices perform only small excursion from each other.
The insets show the structure function in momentum space
of the protonic (thin red) and electronic (thick blue) vorti-
ces. Parallel and codirected vortices interact with each
other as positively and negatively charged strings, and
the splitting is a temperature-induced fluctuation.
Figure 2(b) shows snapshots of the vortex matter when
the system is heated above the temperature of vortex lattice
melting. The protonic and electronic structure functions
have developed ringlike structures, characteristic of a vor-
tex liquid in both the protonic and electronic sectors. While
the vortices perform stronger excursions from each other,
these excursions are still limited and one can always iden-
tify a red line attached to any given blue line. Thus,
cocentricity of protonic and electronic vortex lines is still
largely intact. In such a configuration, a dissipationless
electrical current cannot propagate in any direction.
Quite remarkably, however, codirected currents of protonic
and electronic pairs can propagate through this system
without dissipation, as evidenced by the measurements of
the helicity modulus given in Fig. 1. Figure 2(c) shows a
state of vortex matter which occurs above the vortex ‘‘ion-
ization’’ temperature. The cocentricity of vortices is
strongly reduced; see Fig. 1.

This is also reflected in the subtle difference between
protonic and electronic structure functions in passing from
panel (b) to panel (c). While the structure function of the
electronic vortices essentially is unaffected by passing
through the temperature TC, the structure function for the
protonic vortices is distinctly further isotropized. Namely,
the relative increase of the uniform background for the
structure function of protonic vortices is a manifestation of
the fact that protonic vortices suffer a vortex-loop prolif-
eration transition inside the metallic vortex-liquid phase.
We have argued above that this transition belongs to the
13530
3Dxy universality class, i.e., the same universality class as
the superfluid-to-normal fluid transition in liquid helium
4He [16].

Concluding, we report the observation, in a numerical
experiment, of a novel dissipationless quantum state of
matter, namely, the metallic superfluid. Such a state might
be realized in hydrogen or deuterium, if those systems
were to take up a projected low-temperature liquid metallic
state at an extreme pressure. The highest pressure obtained
to date appears to be around 320 GPa [17]. However, recent
breakthroughs in artificial ultrahard diamond synthesis
technology [13] represent significant progress towards
achieving extreme pressures in diamond anvil cells.
Thus, a metallic superfluid might be the next ‘‘superstate’’
of matter to be realized in the laboratory [18].
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