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Linear Instability of Planar Shear Banded Flow
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We study the linear stability of planar shear banded flow with respect to perturbations with wave vector
in the plane of the banding interface, within the nonlocal Johnson-Segalman model. We find that
perturbations grow in time, over a range of wave vectors, rendering the interface linearly unstable.
Results for the unstable eigenfunction are used to discuss the nature of the instability. We also comment on
the stability of phase separated domains to shear flow in model H.
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FIG. 1. Underlying constitutive curve; steady state flow curve.
a � 0:3, � � 0:05. Banding occurs on the plateau.
Complex fluids such as wormlike [1] and onion [2]
surfactants, polymer solutions [3], and soft glasses [4]
commonly show flow instabilities and flow-induced tran-
sitions to shear banded states. This behavior is captured by
several notable rheological models [5] in which the under-
lying constitutive curve of shear stress vs shear rate,
Txy� _��, is nonmonotonic (Fig. 1), allowing bands of differ-
ing shear rate to coexist at common shear stress, Fig. 2. To
ensure unique, history independent stress selection (Txy �
Tb in Fig. 1), any constitutive model must include spatially
nonlocal terms to allow a smooth interfacial profile be-
tween the bands, Fig. 2 [6]. While this scenario is widely
accepted, most existing studies consider only one spatial
dimension (D � 1) [6,7], normal to the interface (the flow-
gradient direction, y). The stability of these banded states
in D> 1 dimensions has been implicitly assumed, but is,
in fact, an open question.

In this Letter, therefore, we study the linear stability of
1D shear banded states to perturbations with wave vectors
in the interfacial plane �x; z� � �flow; vorticity�. We work
within the nonlocal ‘‘diffusive’’ Johnson-Segalman (DJS)
model [8,9], which is often taken as a paradigm of shear
banding systems. We show that perturbations typically
grow in time, rendering the 1D banded profile unstable.
This finding opens the way to nontrivial interfacial dynam-
ics and could help to understand data revealing erratic
fluctuations of shear banded flows [10], forming a timely
counterpart to new experimental techniques probing inter-
face dynamics [11]. It is also relevant industrially to pro-
cessing instability and oil extraction. The stability of (un-
physical) sharp interfaces in a spatially local model was
studied in Ref. [12]; we contrast that study with ours below.

The model is defined as follows. The momentum bal-
ance equation for a polymeric fluid of density � is

��@t � V � r�V � r � ��� �rV � PI�; (1)

where V�R� is the velocity field, � the solvent viscosity
(assumed Newtonian), and ��R� the viscoelastic stress
carried by the polymeric molecules. For homogeneous
planar shear, V � y _� x̂ , the total shear stress Txy �
�xy� _�� � � _�. The pressure P is set by incompressibility,
05=95(13)=134501(4)$23.00 13450
r � V � 0: (2)

The polymeric stress is taken to obey DJS dynamics [8,9]
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� �@t�V � r��� a�D ���� �D�� �� ���� ���

in which D and � are the symmetric and antisymmetric
parts of the velocity gradient tensor, �rV��� � @�v�. For
a � 1 and l � 0 this model reduces to the Oldroyd
B model, which can be motivated by considering an en-
semble of beads paired into dumbbells by Hookean springs
(simplified polymer chains). Stress is generated as the flow
affinely deforms dumbbells with plateau modulus G, and
relaxed on the time scale � for the springs to regain their
equilibrium length. To capture shear thinning, the DJS
model invokes a ‘‘slip parameter’’ a with jaj< 1 to allow
nonaffine dumbbell deformation [8]. The constitutive
curve Txy� _�� is then capable of nonmonotonicity, Fig. 1.
The nonlocal diffusive term accounts for spatial gradients
across the banding interface on a length scale l. It arises
naturally in models of liquid crystals, and diffusion of
strained polymer molecules [13]. Within this model we
study shear between parallel plates at y � 0; L. We set
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FIG. 2. A 1D banded profile, with spatial gradients restricted
to the flow-gradient direction, y. �_� � 2:0, towards the left of the
plateau in Fig. 1. l � 0:01, Nbase � 800. Note the total shear
stress Txy is uniform across the cell.
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G � 1, � � 1, and L � 1, and use boundary conditions at
y � 0; 1 of @y��� � 0 8 �;�, with no slip and no pene-
tration for the velocity.

For an imposed shear rate �_� in the region of decreasing
stress, dTxy=d _� < 0, homogeneous flow is unstable [14]. A
1D analysis in the flow-gradient dimension then predicts
separation into two bands of shear rates _�1; _�2 and shear
stress, Tb, separated by an interface of width O�l�. As the
applied shear rate �_� increases across the banding regime,
the width fraction of the bands adjusts to maintain the
constraint

R
dy _��y� � �_�, while _�1, _�2, and Tb stay con-

stant, giving a plateau in the steady state flow curve
(Fig. 1). We verified this scenario by numerically evolving
Eqs. (1)–(3), allowing spatial variations only in the flow-
gradient direction y. We used a Crank Nicholson algorithm
[15] with a finite difference scheme on a uniform mesh of
‘‘full’’ points y0; y1; . . . ; yNbase

for � and staggered ‘‘half’’
points y1=2; y3=2; . . . ; yNbase��1=2� for V. We evolved with
time step Dt for a time tmax to steady state, checking for
convergence to Nbase ! 1, Dt! 0, tmax ! 1.

The flow curve is shown in Fig. 1, and a banded profile in
Fig. 2. The smooth variation of � across the interface, of
width O�l�, results from the diffusive term in Eq. (3). By
contrast, in local models (l � 0) the interface is an un-
physical sharp discontinuity. The local case is also patho-
logical in the sense that this sharply banded state is not
uniquely selected, but chosen by flow history from a con-
tinuum of candidates [6,9]. The stability of these sharp
interfaces, sampled from this continuum, was studied pre-
viously. Renardy [16] found instability in the limit of a thin
high shear band in the local JS model. McLeish [12]
studied the Poiseuille flow of a modified local Doi-
Edwards model and found a long wavelength (qx ! 0)
instability due to the jump in normal stresses across the
interface. This was also discussed in Ref. [17].

Here we study the nonlocal case, l � 0. Because the 1D
base profile is now uniquely selected [6,9], and further-
more now has a potentially stabilizing surface tension,
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there is no reason, a priori, to expect any instability seen
in the local case to persist. And just as a small gradient term
strongly modifies the 1D base state (selection for any l > 0
but not at l � 0), one might expect an equally dramatic
modification of the results of any 2D stability calculation.

We linearized the model Eqs. (1)–(3) for small pertur-
bations (lower case) about the (upper case) base profile,
~��x; y; z; t� � ��y� �’q�y� exp�!qt� iqxx� iqzz�. The
vector � comprises all components � � ����; V��, the
pressure being eliminated by incompressibility. This lin-
earization results in an eigenvalue equation with an opera-
tor L acting linearly on the perturbation ’q�y�:

!q’q�y� � L���y�;q; @y; @2
y; . . . �’q�y�: (4)

For numerical study, we discretized this equation on a
staggered mesh. The 1D base profile ��y�was read in from
the calculation described above. For narrow interfaces, its
uniform mesh had too many nodes for use in the numerical
eigenvalue problem, so we adapted it to focus attention
near the interface. We then calculated the eigenmodes of
this discretized problem.

The results, discussed below, were checked: (i) for con-
vergence with respect to mesh structure; (ii) that for a
homogeneous base state on the underlying constitutive
curve our results match those of Ref. [18]; (iii) that for a �
1, l � 0 (the local Oldroyd B model), we recover Fig. 3 of
Ref. [19]; (iv) that linearization about a semievolved (non-
steady) banded state using the analytically derived Eq. (4)
gives the same results in the limit qx � 0, qz ! 0 as a
direct numerical linearization performed in the 1D base
state evolver; (v) for robustness with respect to first evolv-
ing the base state on either a uniform or adapted grid, using
either a semi-implicit or an explicit algorithm; (vi) that two
methods of eliminating the pressure (the Oseen tensor and
the curl operator) agree.

For any base profile ��y� and wave vector q, the number
of eigenmodes is equal to the number of order parameters
summed over all mesh points. We consider only the eigen-
value !max�q� with the largest real part, Re!max�q�. In
particular, we ask if this mode is stable, Re!max < 0, or
unstable, Re!max > 0. We take a � 0:3 and a low solvent
viscosity � � 0:05� G� � 1 consistent with experi-
ment, but have checked for robustness to variations in these
quantities.

The dispersion relation Re!max�qx; qz � 0� for fluctua-
tions with a wave vector in the direction of the unperturbed
flow is shown in Fig. 3 for �_� � 2:0. At any qx, Re!max

increases with decreasing l, and for small enough l [but
still larger than the l � O�100 nm� expected physically]
the dispersion relation is positive over a range of wave
vectors, rendering the 1D profile unstable. This applies to
shear rates right across the banding regime, Fig. 4.

In the limit l! 0, qx ! 0, the corresponding eigenfunc-
tion f@yvx; vy � 0; ����y�g tends to the spatial derivative
of the base state, @yf@yVx; Vy � 0;���g, representing a
simple displacement of the interface in the flow-gradient
1-2
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FIG. 5. Perturbation to flow field s1Rev�y�eiqxx (arrows), and
contour lines of perturbed normal stress ~�xx�x; y� � �xx�y� �
s2Re�xx�y�e

iqxx (dotted lines), corresponding to the eigenvalue
of Fig. 3 with l � 0:01, qx � 2:0. Contours downwards: 0.45,
0.60, 0.75, 0.90, 1.05, 1.20, 1.35 (middle value shown thicker).
Arbitrary scale factors s1 � 1:5 and s2 � 0:3.
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FIG. 3. Real part of the eigenvalue of the most unstable mode.
a � 0:3, � � 0:05, �_� � 2:0, Reynolds number �=� � 0. The
data for l � 0:01 correspond to the base profile in Fig. 2.
Symbols: data. Solid lines: cubic splines.
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direction, with small bulk corrections to maintain �_� �
const. For qx > 0, this displacement is modulated by a
wave of wave vector qxx̂ with an eigenvalue !max�qx� �
!0 � iqx!1 � q

2
x!2 with !2 > 0, signifying instability. A

natural question is whether this instability resembles that
described by McLeish in a local model [12]. As noted
above, it is not obvious, a priori, that this should be true.
Indeed, a detailed analysis is more complicated in this
case, and deferred to a future paper. However, the numeri-
cal results of Fig. 5 are qualitatively consistent with
Ref. [12], as follows. A wavelike interfacial displacement
with extrema at qxx=2� � 0:0; 0:5; 1:0 causes an interfa-
cial tilt near qxx=2� � 0:25; 0:75, exposing the normal
stress jump ��xx across the interface (Fig. 2). This triggers
a horizontal perturbation to the flow field Imvx in these
regions, which recirculates, giving anO�q2

x� vertical veloc-
ity Revy at qxx=2� � 0:0; 0:5; 1:0. This enhances the ori-
ginal displacement, causing instability. Stability is restored
for higher qx (Fig. 3), a feature absent in the local case.

The eigenvalue Re!max�q� over the �qx; qz� plane is
shown in Fig. 6. Modes with a wave vector along the qx
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FIG. 4. Peak of the dispersion relation, i.e., Re!max at
dRe!max=dqx � 0. Parameters as for Fig. 3. Limits of the
banding regime shown by vertical lines. Symbols: data. Dotted
lines: cubic splines, as a guide to the eye.
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axis are much more prone to instability than those along
the qz axis. Nonetheless, for smaller values of l (not
shown), modes along the line qx � 0 can go unstable as
well.

We note finally an important bound on the validity of our
calculation. The expansion used to obtain Eq. (4) is valid
for perturbations that are small at any point in space: for
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FIG. 6. Real part of the most unstable eigenvalue. a � 0:3,
� � 0:05, �_� � 2:0, Reynolds number �=� � 0:01 (negligible),
l � 0:01. Contours are �0:45;�0:40; . . . (dotted line), 0:00
(dashed line), and . . . 0:25; 0:30 (solid line).
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example, for the stress components ��� � 1. Displace-
ment of the interface by a distance � gives ��� �
�d���=dy, which isO��=l�, because the interfacial width
is O�l�. We are thus restricted to displacements, �� l. In
future work, we consider �	 l.

We comment briefly on the stability of a sheared inter-
face between phases of a binary fluid in ‘‘model H’’ [20].
Although this was studied in Ref. [21], that work used a
single equation for the position of the interface, therefore
neglecting changes in the interface’s profile. Nonetheless,
we too found the interface to be stable. This supports the
idea that normal stresses (absent in model H) cause the
instability described above. We also note the fundamental
difference between this instability, which occurs due to
viscoelastic effects even in the inertialess limit, and others
such as the Kelvin Helmholtz instability [22], seen in
nonviscoelastic fluids due to inertial effects.

To conclude, we have found 1D planar shear banded
flow to be linearly unstable to fluctuations with a wave
vector in the plane of the banding interface, within the DJS
model. This applies to shear rates right across the stress
plateau, suggesting that the instability is ubiquitous and
that the existing theoretical picture of two stable shear
bands separated by a steady interface needs more thought.
Indeed, our finding is consistent with accumulating evi-
dence for erratic fluctuations [10] and band breakup [23].
Future work will study the fate of the interface beyond the
validity of this linear study. One possibility is that the
instability is self-limiting beyond some amplitude set by
l (e.g., l1=2). This would be consistent with a narrowly
localized but still unsteady interface, which might be in-
terpreted as steady in experiments that did not have high
spatial resolution (perhaps reconciling early reports of
apparently steady interfaces with recent work revealing
fluctuations).

By contrast, if the instability were not self-limiting,
and yet ubiquitous in existing banding models, one would
need a new theoretical picture of (reasonably) steady shear
bands that could still accommodate the normal stress jump
across the interface. Other open questions include the
status of the instability in curved Couette geometry, and
the relative importance of instabilities at nonzero q (as
studied here) to those found at zero q in recent models of
spatiotemporal rheochaos [24].
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