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Chemical signaling is one of the ubiquitous mechanisms by which intercellular communication takes
place at the microscopic level, particularly via chemotaxis. Such multicellular systems are popularly
studied using continuum, mean-field equations. In this Letter we study a stochastic model of chemotactic
signaling. The Langevin formalism of the model makes it amenable to calculation via nonperturbative
analysis, which enables a quantification of the effect of fluctuations on both the weak and the strongly
coupled biological dynamics. In particular, we show that the (i) self-localization due to autochemotaxis is
impossible. (i) When aggregation occurs, the aggregate performs a random walk with a renormalized
diffusion coefficient Dy « € 2N ~3. (iii) The stochastic model exhibits sharp transitions in cell motile
behavior for negative chemotaxis, behavior that has no parallel in the mean-field Keller-Segel equations.
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The study of biological systems through modeling is a
promising endeavor to understand or throw light on the
macroscopic complexity originating from the microscopic
cellular interactions common to all living organisms. At
the microscopic level, cells interact with each other
through various means, principally via local short-range
forces such as adhesion and through long-range forces
mediated via chemical signals. In many cases, cells do
not just respond to chemical signals but are actively in-
volved in their production also. This signal feedback leads
to intricate intercellular communication, which is the main
mechanism behind the emergence of the observed complex
behavior of multicellular systems. An important aspect of
the feedback mechanism is that the cells’ dynamics are
typically dominated by long-range spatiotemporal correla-
tions. Modeling has traditionally been approached through
the construction of coupled partial differential equations,
describing the evolution of a density field p, representing
the number density of cells. Many of these models are
variants of the Keller-Segel equations [1]. Recently it has
been shown that the derivation of the latter equations from
a microscopic, stochastic Langevin model of interacting
cells, is achieved by neglecting cell-cell correlations [2];
indeed, this verifies the hypothesis that Keller-Segel vari-
ants are mean-field type models; i.e., they are applicable to
modeling biological situations in which the cell number
density is sufficiently large. This statement is, however,
qualitative; it is not clear what are the similarities and
differences predicted by the stochastic models and their
deterministic counterparts.

In this Letter we study a stochastic model of chemotactic
signaling, this being an individual-based model of cells
interacting via long-range chemical signals and actively
responding to such signals via chemotaxis. Such models
have been previously studied by a number of authors (see,
for example, [3—7]). We show that it is possible to gain an
understanding of the cells’ strongly correlated dynamics by
means of a nonperturbative analysis applied directly on the
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Langevin equation formalism of the model. This gives us
an analytical quantitative way of comparing the stochastic
and deterministic models. It is to be emphasized that the
nonperturbative nature of the analysis method will enable
us to obtain insight, otherwise not obtainable via the con-
ventional perturbative approach [2] or through analysis of
the corresponding mean-field type equations. The system
we analyze consists of N chemotactic cells, which are
constantly secreting a chemical (whose concentration is
denoted by ¢) and which respond to the local chemical
gradient by either moving up the gradient (positive chemo-
taxis) or down the gradient (negative chemotaxis). The
latter leads to dispersion, whereas the former effect leads
to aggregation. Such mechanisms are common to many
organisms including amoeba, myxobacteria, leucocytes,
and germ cells. We first treat the case of a single self-
interacting cell, then extend it to the multicellular case. The
equations defining the single-cell stochastic model are [2]

X (1) = &(1) + kaV(x,, 1), (1)

3,0(x,1) = D|V2p(x, 1) — Ap(x, 1) + BS[x — x.()]
)

Equation (1) is a Langevin equation describing the motion
of a cell whose position at time ¢ is denoted as x.(¢). The
stochastic variable ¢ is white noise defined through
(&9(0)) = 0 and (£€(2)£2(¢')) = 2Dy8,,,8(t — ') where a
and b refer to the spatial components of the noise vectors.
In the absence of a chemical gradient, the cell performs a
pure random walk characterized by a diffusion coefficient
Dy. In the presence of a chemical gradient, the cell has a
velocity kaV ¢ superimposed on the random walk, where
a is a positive constant typifying the strength of chemo-
taxis and k is a constant that can take the values —1
(negative chemotaxis) or 1 (positive chemotaxis). The
overall effect is a random walk biased in the direction of
increasing chemical concentration (k = 1) or in the direc-
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tion of decreasing chemical concentration (k = —1).
Equation (2) is a reaction-diffusion equation describing
the chemical dynamics. The chemical diffuses with diffu-
sion coefficient D;, decays in solution at a rate A, and is
secreted by the cell at a rate 8. The feedback mechanism is
what makes this problem nontrivial. The cell constantly
modifies its environment through its continuous chemical
secretion and simultaneously reacts to its environment via
chemotactic sensing and directed motion. For positive
chemotaxis, the net effect of the two coupled equations
gives rise to a random walk having a larger probability of
visiting spatial areas that it has previously visited than of
visiting previously unexplored regions. For negative che-
motaxis, the opposite situation occurs: the walker is “re-
pelled” from regions that it has previously visited. The
self-interaction of a cell is referred to as autochemotaxis.

The strong non-Markovian nature of the dynamics is
what makes this and similar problems (involving self-
interacting random walks) difficult to analyze. In this
Letter we introduce a nonperturbative method to explore
the strong-coupling aspects of the theory. Unlike perturba-
tion theory in the coupling parameter € = a8 [2], this
method can be applied directly to the Langevin formula-
tion of the model; i.e., the analysis bypasses the conven-
tional derivation of the equations of motion for the single
and multicell probability distributions. Integrating the
chemical equation Eq. (2), assuming that there is no chemi-
cal initially ¢(x,0) = 0, one finds an expression for the
local chemical gradient sensed by the cell at time ¢:

Vo = —§(477t)_d/2D1_(1+d/2) ]1 du [x.(1) = x.(t — ut)]

ot R

[xe () = x (1 — un)?
4D1tu :|’

X exp[—/\tu (3)

where d is the dimensionality of space and 7 is a refractory
period, i.e., a period of time in which the cell is not
sensitive to chemical signals, introducing an effective
time delay between signal emission and signal transduc-
tion. Another way of stating this is that the cell at time ¢
senses the local gradient due to chemical production in the
period ¢ € (0,  — 7). Such an effect is a common feature
of many chemotactic cells [8]. The introduction of 7 also
regularizes the integral in Eq. (3). Although it is in general
impossible to solve this integral, since this requires full
knowledge of all previous cell positions, in the asymptotic
limit 7 > 1/ the integral is dominated by small u [9]. It
may therefore be simplified by use of the approximation
X () — x.(t — ut) =~ utx.(r). We further introduce two
convenient variables: y = 2em~4/2(4D;)~(1+4/2) and A =

A+ %. Substituting the resulting expression for the

chemical gradient in the Langevin equation for the cell
we get

—Ntu
(1) = £(t) — KXC(t)|:tld/2'y f l/t dueuT/z} )

T

Thus we have showed that the long time dynamics of a self-
interacting chemotactic cell can be described by a modified
Langevin type equation. The explicit computation of the
integral on the righ-hand side of Eq. (4) leads to the
following expressions for d = 1, 2, and 3, respectively:

- : 2\ -
e(1 erf\/ﬁ)xco+ X2 > 1/2’ 5)

X, =¢—« 4D?/2\/X 4D, A

€ T2
X . =&~ k—=Ei[ AT+ — )%, 6
Xe=¢ K87TD% 1( 4 4D1>X‘ ©)

€ TX2
X, =~ K—————5— 1—‘/ AT + <)k, (7
Xem¢ K87T3/2D?/2\/?< 7 7T4Dl>xc @

Note that the function Ei(x) in Eq. (6) refers to the ex-
ponential integral. In many biological cases it is found that
{=Dy/D, <1 (for example, ¢ = 1/40-1/400 for
Dictyostelium [10] and ¢ = 1/30 for microglia cells and
for neutrophils [11]) and so the above triad of equations
simplifies by noticing that to a first approximation we have
(#2) < 4D, A. Note that this entails replacing the magni-
tude of the velocity squared x2 in Egs. (5)—(7) by its
average over noise (x2). Then the equations are all reduced
to the Langevin form for a pure random walk, with a
dimensionally dependent renormalized cell diffusion coef-
ficient D, of the form

D, = Dy(1 + k&) 72, )
where
. e(l — erf+/A7T)
&= ©
4DY*/X
€eEi(A7)
€, = , 10
€2 S#D% (10)
€
3= —7—. (11)
8773/2Df/2ﬁ

The expressions for D, are consistent provided they do not
invalidate the initial assumption (x2) << 4D, A. It is easy to
show that the above treatment is justified given that the
inequality D,/2D A8t < 1 is met, where 1 is a typical
correlation time for the cell’s direction of movement. The
inequality verifies our initial approximation used in deriv-
ing Eq. (8), namely, that the condition { < 1 allows us to
neglect the factor ¥2/4D; A in Eqgs. (5)—(7). The validity of
our results is also confirmed by numerical simulations.
Figure 1 shows a plot of D,/D, versus the coupling
strength e for three different ratios of { in one dimension
(k = 1). Expanding the equations for D, in a power series
for € up to and including terms in €, we find that these
expressions agree exactly with those from first- and
second-order perturbation theory in the limit of small ¢
[2]. The advantage of the nonperturbative method over its
perturbative cousin is its simplicity and its theoretical
validity for all coupling strengths. The nonperturbative
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results suggestively indicate that, for positive chemotaxis
(k = 1), for large coupling € independent of the values of
Dy, D, and A (provided A >0) the cell’s asymptotic
motion can be described by a random walk with a renor-
malized diffusion coefficient. In particular, we have the
prediction D, « € 2. Since D, is always positive and
greater than zero, this clearly shows that self-localization
due to autochemotaxis is impossible in all dimensions.
Applying the same methodology to solving the case of N
interacting cells, one finds that contrary to the single-cell
case it is not possible to decouple the equations in such a
way so as to determine an approximate equation of motion
for each cell. However, it is possible to determine an
equation of motion for the center of mass of the interacting
cells. In particular, one finds that if aggregation occurs then
the center of mass of the aggregate has a renormalized
diffusion coefficient

1 e Muq—2

T/t u
In the limit of large coupling strength, independent of
dimension d, the above equation is reduced to the simple
form D « € 2N 3. The latter implies that fluctuations in
the position of the center of mass decrease as N /2 (note
that in the absence of chemotaxis, i.e., € = 0, the fluctua-
tions decrease as N~ '/2, as expected). In the mean-field
equations, the center of mass corresponds to the quantity
[dxxp(x, 1)/ [d?xp(x, 1). For the case of aggregation,
the latter quantity agrees with the mean position of the
center of mass obtained from the stochastic model.
However, note that, whereas the mean-field equations can
give only information about the average position of the
center of mass of the aggregate, the stochastic equations
characterize the fluctuations about this mean. These fluc-
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FIG. 1. Renormalization of the single-cell diffusion coefficient
in one dimension. The parameters used are D; = 10, A = 0.05,
and 8¢ = 0.3. The number of samples taken is 5 X 10*. D, is 0.1
for the circle data points, 1.0 for the plus data points, and 5.0 for
the square data points. The solid line is the prediction from the
nonperturbative method in the limit of small /.

tuations may play an important role in the fusion of two
separate but close aggregates in which the number of cells
is not very large. Such a phenomenon would lead to differ-
ent temporal evolution histories (though not necessarily a
different final outcome) between the stochastic and mean-
field equations.

We now turn our attention to the case of a cell self-
interacting via negative chemotaxis, i.e., k= —1.
Renormalized diffusion, Eq. (8), is the cell’s asymptotic
behavior; this is exactly as for positive chemotaxis, though
now D, > D,. However, note that D, has a singularity
when the coupling strength equals a certain critical value
given by €; = 1. This indicates a possible transition from
renormalized diffusive motion (for weak coupling) to a
different type of motile behavior. Since we are postulating
a transition to behavior other than diffusion, the relevant
parameter to investigate is A, which is defined through the
mean square displacement of the cell as (x2) o« !,
Numerical simulations in one dimension show that asymp-

totically A =1 for e < 4Di/ 2\/1 whereas for € > 4D?/ Zﬁ
invariably we have A = 2 (Fig. 2). We refer to this phase as
ballistic. For € very close to the critical point we find that
the system takes a very long time to stabilize into its
asymptotic limit, a feature typical of phase transitions in
physical systems [12]. It is possible to gain some under-
standing on the nature of the transition by temporarily
ignoring the noise vector ¢ in equations Egs. (5)—(7), and
analyzing the then deterministic equations. Note that
ignoring the noise is plausible for the case { < 1 since

A A=20 —

85T A=05 — |

W
T
1

25 B

N
1

05 1 1 1 1 1 1 1 1 1 |
0 20 40 60 80 100 120 140 160 180 200

t

FIG. 2. Graph showing the asymptotic value of A for two val-
ues of the parameter A = 6/4D?/ *JA in one dimension. For
A <1, the asymptotic value of A is unity, while for A > 1, A
takes the value of 2. This result supports the transition predicted
by theory. A is computed using the relation A = d(log(x2))/
d(logt). For the case A = 2, data are averaged over 10* samples,
whereas 2 X 10° samples were used for A = (.5. The parameter
values used are Dy, = 0.01, D; =1, A =0.1, and 6t =0.1.
Note that 7 is chosen small enough so that it satisfies the
condition erf+/AT < 1.
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this qualitatively implies that the noise term is small com-
pared to the velocity term in the Langevin equation Eq. (1).
For positive chemotaxis (k = 1), the only solution in all
dimensions is the trivial solution X, = 0. Thus if the cell is
momentarily perturbed from its original position, it will
move for a short time and then come to a complete halt,
signifying the stability of the equilibrium state. This stabil-
ity is independent of the strength of the perturbation or the
time at which the perturbation is applied as long as the
perturbation is not continuous. This result is also compat-
ible with the form of the renormalized diffusion coeffi-
cients derived for positive chemotaxis; i.e., in the limit of
very strong coupling (chemotaxis dominating over the
noise) the cell motility becomes very small. For negative
chemotaxis (k = —1), there exist two real solutions: the
trivial solution X, = 0 and a nonzero solution obtained
through algebraically solving for the cell velocity. For
€; < 1, the only solution is the trivial solution; however,
for €; > 1, both solutions are possible. This means that for
weak coupling, a cell that is perturbed from its original
position wanders around and eventually stops moving.
However, for coupling strengths larger than a critical cou-
pling strength if the cell is perturbed from its original state,
then it will move with constant speed in the same direction
in which it was originally perturbed. In this case the
equilibrium state is unstable. Thus the zero noise analysis
predicts the observed sharp transition in A at the critical
coupling €; = 1, for small /. The expressions for the
deterministic cell velocity (€; > 1) obtained from such a
treatment are also found to be in good agreement with the
root mean square cell position divided by the time, ob-
tained from simulations. It is interesting to note that in vitro
experiments investigating the negative chemotaxis phase
of an initially compact aggregate of Dictyostelium show
that the cells’ displacement is proportional to time and not
to the square root of time as normal nonchemotactic cells
do [13]. This is concordant with our theory, since for an
initially dense aggregate of cells, dispersion forces the self-
interaction of cells to take over the asymptotic dynamics;
i.e., ballistic behavior is the predicted outcome. It is no-
table that such behavior is not obtained from the Keller-
Segel equations (the equations referred to in this case
are the Keller-Segel equations [1] with a negative « in-
stead of a positive one, as is usually the case for positive
chemotaxis).

In conclusion, we have shown that (i) a single-cell self-
interacting via positive chemotaxis (D, < D) performs a
random walk characterized by a renormalized diffusion
coefficient D, > 0. This implies that the self-localization
of a single chemotactic cell is impossible, independent of
the strength of the coupling between the cell and the
chemical field. (ii) A system of cells aggregating via
positive chemotaxis leads to an aggregate whose center
of mass performs a random walk with a renormalized
diffusion coefficient. The latter characterizes the fluctua-

tions about the center of mass, information not given by the
mean-field model. For large coupling, fluctuations in the
aggregate center of mass decrease as N~>/2, and thus, in
this regime, the differences in the temporal evolution pre-
dicted by the stochastic and mean-field equations may not
be very large. This may explain why the mean-field models
have been successful at qualitatively modeling a number of
chemotactic phenomena. For biological cases where vy is
not large, the fluctuations are considerably larger, and thus
the differences between the two types of models may be
more pronounced. (iii) Negative chemotaxis results in
either diffusive or ballistic behavior. Whereas for chemo-
tactic aggregation, one could argue that the mean-field
model equations (i.e., the Keller-Segel equations) become
a better description at later times, when the cell number
density becomes large, this is not the case for dispersion via
negative chemotaxis. This is borne out by our simulations.
Indeed, this may apply to any system that involves cellular
interactions via negative chemotaxis (e.g., the directional
control of axonal growth in the wiring of the nervous
system during embryogenesis [14]).
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