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Counterion Density Profiles at Charged Flexible Membranes
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Counterion distributions at charged flexible membranes are studied using analytical and simulation
methods in both Poisson-Boltzmann and strong-coupling limits. The softer the membrane, the more
smeared out the counterion-density profile becomes and counterions penetrate through the mean-
membrane surface location, in agreement with anomalous scattering results. Repulsion between mem-
brane charges enhances protrusions and induces short-scale membrane roughening.
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The study of charged colloids and biopolymers faces a
fundamental problem: In theoretical investigations, the
central object which is primarily computed is the charge
density distribution in the electrolyte solution adjacent to
the charged body [1]. Experimentally measurable observ-
ables are typically derived from this charge distribution.
For example, the force between charged particles follows
from the ion density at the particle surfaces via the contact-
value theorem. Likewise, the surface tension and surface
potential are obtained as weighted integrals over the ion
distributions. It has proven difficult to measure the counter-
ion distribution at a charged surface directly because of the
small scattering intensity. Notable exceptions are neutron
scattering contrast variation with deuterated and proto-
nated organic counterions [2] and local fluorescence stud-
ies on Zinc-ion distributions using x-ray standing waves
[3]. Clearly, direct comparisons between theoretical and
experimental ion distributions (rather than derived quanti-
ties) is desirable as it provides important hints how to
improve theoretical modeling.

In a landmark paper the problem of low intensity was
overcome by anomalous x-ray scattering on stacks of
highly charged bilayer membranes [4], allowing us to
sensitively discriminate counterion scattering from the
background. Since then, similar techniques have been ap-
plied to charged biopolymers [5,6] and to oriented charged
bilayer stacks, where the problem of powder averaging is
avoided [7]. However, scattering on soft biomaterials
brings in a new complication, not considered theoretically
so far: soft membranes and biopolymers fluctuate in
shape, and thus perturb the counterion-density profile.
Comparison with standard theories for rigid charged ob-
jects of simple geometric shape becomes impossible. Here
we fill this gap by considering the counterion-density
profile close to a planar charged membrane which exhibits
shape fluctuations governed by bending rigidity.

We derive for a relatively stiff membrane closed form
expressions for the counterion-density profile; they depend
crucially on the membrane stiffness and are quite different
in the asymptotic low and high-charge limits. The analytic
density profiles, which compare favorably with our simu-
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lation results, will facilitate the analysis of scattering data
since they allow for fits with few physical parameters. In
previous experiments, a puzzling ion penetration into the
lipid region was detected but interpreted as an artifact [4].
We show that ion penetration indeed occurs and is due to
correlated ion-membrane fluctuations. The electrostatic re-
pulsion between membrane charges also renormalizes the
membrane elasticity: since membrane protrusion modes
are electrostatically favored, the short-scale bending rigid-
ity is reduced and the membranes become locally rougher.

The Hamiltonian H � Hm �He of the membrane-
counterion system consists of the elastic membrane part
Hm, and the electrostatic part He. We discretize the mem-
brane shape on a two-dimensional NL � NL square lattice
with lattice constant a and rescale all lengths by the Gouy-
Chapman length � � 1=2�q‘B�m according to r � �~r,
where �m � QM=N2

La
2 is the projected charge density of

the membrane and ‘B � e2=4�"0"kBT is the Bjerrum
length (e is the elementary charge, " the dielectric con-
stant). Parametrizing the membrane shape by the height
function h�x�, the elastic membrane energy in harmonic
approximation reads in units of kBT [8]

Hm�~h� �
K0

2

Z
d2~x��~h�~x��2 �

~g
2

Z
d2~x~h2�~x�; (1)

where � is the Laplace operator, K0 is the bare bending
rigidity and ~g � g�4 is the rescaled strength of the har-
monic potential. The electrostatic energy accounts for the
interaction ofN counterions of valence q andM membrane
charges of valence Q, related by the electroneutrality con-
dition QM � qN,

He �
XN�1

i�1

XN
j�i�1

�
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XN
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XM
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Q=q�
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k
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�Q=q�2�
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(2)

where � � 2�q3‘2
B�m denotes the coupling parameter

[9]. The position of the ith counterion is ~ri while the kth
membrane ion is located at ~Rk � �~xk; ~h�~xk� � ~d� and dis-
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placed by ~d � 2~aNLM
�1=2 beneath the membrane surface

which is impenetrable to the pointlike counterions. With
this value of ~d we can neglect charge-discreteness effects
[10] and concentrate on membrane-shape–fluctuation ef-
fects. In most of our simulations the membrane ions are
mobile and move freely on the membrane lattice, with a
packing fraction � � M=N2

L. For the long-ranged electro-
static interactions we employ laterally periodic boundary
conditions using Lekner-Sperb methods [9]. Simulations
are run for typically 106 Monte Carlo steps using 100
counterions and 100 membrane ions. In Fig. 1 we show
two simulation snapshots. The counterions form in the
weak-coupling limit [� � 0:2, Fig. 1(a)] a diffuse dense
cloud while in the strong-coupling limit [� � 1000,
Fig. 1(b), note the anisotropic rescaling] the lateral ion-
ion distances are large compared to the mean separation
from the membrane. Pronounced correlations between
membrane shape fluctuations and counterion positions
are observed in both snapshots.

The qualitatively different ionic structures at low/high
coupling strength are reflected by fundamentally different
analytic approaches in these two limits: the starting point is
the exact field-theoretic formulation of the partition func-
tion of the system [11]

Z ’
Z

D~hD�e�Hm�~h��H��~h;��=�: (3)

The field i� is the fluctuating electrostatic potential [11].
The electrostatic action reads

H��~h;���
1

8�

Z
d~r�r��~r��2�

i
2�

Z
d~r��~z� ~h�~x����~r�

�
�

2�

Z
d~re�i��~r���~z� ~h�~x�� (4)

where ��z� � 1 for z > 0 and zero otherwise. The expec-
tation value of the counterion density reads

����r� �
��~r�

2�‘B�2
m
� �h��~z� ~h�~x��e�i��~r�i: (5)

The dimensionless fugacity � is determined by the nor-
malization condition

R
d~z ���~z� � 1. In the weak-coupling
FIG. 1. Snapshots for (a) weak coupling � � 0:2, 	0
?=� � 0:80

1000, 	0
?=� � 0:38, K0 � 174, ~g � 0:006, ~a � 13:21. Simulations a

on a N2
L � 60� 60 membrane lattice.
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limit, �! 0, fluctuations of the field � around the saddle
point value are small and Gaussian variational methods
become accurate. The variational Gibbs free energy reads
Fv � F0 � hH��~h;��=��Hm�~h� �H0�~h;��i0, where
h. . .i0 is an average with the variational Hamiltonian H0

and F0 is the corresponding free energy. The most general
Gaussian variational Hamiltonian is 2H0�~h;���R
d~xd~x0 ~h�~x�K�1�~x;~x0�~h�~x0��

R
d~rd~r0��~r�v�1�~r;~r0���~r0�,

where the field � is defined by ��~r� :���~r���0�~r��
i
R
d~x0d~x00P�~r; ~x0�K�1�~x0;~x00�~h�~x00�; and P is the connected

correlation function P�~r; ~x0� � hi��~r�~h�~x0�ic0. The varia-
tional parameters are the mean potential �0, the coupling
operator P, the propagator of the electrostatic field v, and
the membrane propagator K. For K we use the bare propa-
gator of the uncharged membrane [8], giving a bare
membrane roughness of �~	0

?�
2 :� h~h2�0�i0 � 1=

��������������
64K0 ~g
p

.
Assuming the charge propagator v to be isotropic and
translational invariant (which is an approximation), v turns
out to be the bare Coulomb propagator, v�r� � 1=r. The
remaining variational equations �Fv=�P��Fv=��0�0
are solved perturbatively in an asymptotic small ~	0

?

expansion, i.e., for a relatively stiff membrane. The
solution for P for ~x � ~x0 is expressed in terms of the
Meijer’s G function and reads [neglecting terms of

O��~	0
?�
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0
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3
4g�. The result for the mean

potential �0 is shown in Eq. (6) and reduces in the
limit ~	0

? ! 0 to the known Gouy-Chapmann poten-
tial i��~z� � 2 ln�1� ~z� [9]. We defined the auxiliary

function w�~z� as w�~z� :�
���������������������
2�~	0

?�
2=�

q
expf�~z2=2�~	0

?�
2g �

~z erfc�~z=
���������������
2�~	0

?�
2

q
�. The counterion density according to

Eq. (5) is given by Eq. (7); it reduces to the known
mean-field counterion density ��PB�~z� � �1� ~z��2 in the
case of vanishing membrane roughness ~	0

? [9,12]. In Fig. 2
we show the laterally averaged counterion-density profiles
for weak coupling � � 0:2 obtained from Monte Carlo
(MC) simulation (solid squares) for several membrane
roughnesses. For the comparison with the analytical ex-
pression Eq. (7) (solid lines) we use the discrete membrane
, K0 � 0:07, ~g � 0:57, ~a � 0:18 and (b) strong coupling � �
re done with N � 100 counterions and M � 100 membrane ions
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propagator K�1
mn � 4K0�cos�2�n=NL� � cos�2�m=NL� � 2�2=~a4 � ~g and calculate the membrane roughness according to

�~	d?�
2 � �2�=~aNL�

2P
m;nKmn, the lateral correlation length follows as ~	dk � 1=�2 ~	d?~g1=2�. For the comparison in Fig. 2 we

insert ~	d? into Eq. (7). The general agreement is very good, for the roughest membrane with ~	d? � 1:211 some deviations
are observed, signaling the breakdown of our small ~	0

? expansion.
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FIG. 2. Rescaled counterion density ���~z� � ��~z�=2�‘B�
2
m as

a function of the rescaled distance ~z � z=� from Monte Carlo
simulations (data points) and asymptotic theory [solid lines,
Eqs. (7) and (9)]. In the weak-coupling limit (� � 0:2, solid
squares), the membrane roughness is ~	d? � 1:211, 0.3184, 0 and
~	dk � 0:2483; 0:2933;1 from bottom to top. In the strong-
coupling limit (� � 1000, open triangles) we have ~	d? �
1:211, 0.3184, 0 and ~	dk � 17:2475; 20:7458;1 from bottom to
top. Numerical errors are smaller then the symbol sizes. In all
cases the membrane ions are mobile and the packing fraction is
� � 0:028. The inset compares profiles for � � 0:2, ~	d? �
0:3184 for � � 0:028 (diamonds) and � � 0:25 (circles) for
mobile membrane ions and results for � � 0:2, ~	d? � 1:211,
� � 0:028 for mobile (squares) and fixed (stars) membrane ions
and � � 1000, ~	d? � 1:211, � � 0:028 for mobile (triangle) and
fixed (crosses) membrane ions.
In the strong-coupling limit �! 1, we expand the parti-
tion function equation (3) in inverse powers of � [9]. We
find for the leading term of the density equation (5)

���~r� �
�

Z

Z
D~h��~z� ~h�~x��e�Hm�~h��V�~h� �O

�
1

�

�
: (8)

The interaction term V is given by V�~h� � �~z�R
d~r0 ~h�~x0�f~h�~r;~r

0�, with the function f~h, defined by
f~h�~r; ~r
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 r0 ~h�~x0��=
2��j~x � ~x0j2 � �~z � ~z0�2�3=2. To calculate the integral
equation (8) we expand in powers of f~h, which gives rise to
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The density (9) reduces to the known strong-coupling
density ��SC�~z� � e�~z in the limit ~	0

? ! 0 [9]. We compare
in Fig. 2 the analytically obtained counterion-density pro-
files (solid lines) with the laterally averaged densities
obtained using MC simulations (open triangles) for � �
1000 and different ~	d?. The analytic approximation repro-
duces the simulated profiles very well. Comparison of
mobile and immobile membrane ions gives no detectable
difference for the counterion profile, also the membrane-
ion fraction � plays a minor role (Fig. 2 inset). As can be
seen in Fig. 2, the counterion profiles are noticeably dif-
ferent in the low and large-coupling regimes, an effect
well captured by the analytic expressions equations (7)
and (9). The membrane roughness 	? as well as the
coupling parameter � can be varied experimentally by
changing the membrane composition, e.g., the ratio of
charged to uncharged lipids, the valence of the counter-
ions, the amount of cholesterol, etc. Neglecting the corre-
lations between membrane and counterion fluctuations
results for small coupling in the expression ���~z� �R
d~hw�~h� ��PB�~z� ~h�, where w�~h� � e��~h=~	0

?
�2=2=

�������
2�
p

~	0
?

is the normalized membrane height distribution (with a
similar expression using ��SC in the strong-coupling limit).
Such a factorization approximation never works well, and
in specific does not reproduce the fact that the maximum of
the counterion-density distribution is located at negative
values of ~z for strong coupling (see Fig. 2).

In the analytics so far we used the bare membrane
roughness ~	d? without modification due to electrostatics.
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In Fig. 3 we show the ratio of ~	? � �h~h
2�0�i�1=2, the mem-

brane roughness measured in the MC simulation, and ~	d?,
for the bare uncharged membrane, as a function of the
coupling parameter � for two different membrane-ion
fractions � (open symbols). The ratio is larger than unity,
i.e., charges on the membrane enhance protrusions which
increase their mutual distance [13]. Experimentally, pro-
trusions are created by vertical shifts of single lipids. Since
protrusions, which form the local degrees of freedom in our
simulations (and are also included in the analytic theory
since we keep the projected area constant), do not conserve
the true membrane area, the roughening we discuss here
has to be distinguished from the electrostatic stiffening in
1-3
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FIG. 3. Ratio of simulated and bare roughness ~	?=~	d? as a
function of coupling strength � for membrane-ion fraction � �
0:028 and membrane roughness ~	d? � 0:3184 (open squares)
and ~	d? � 1:2111 (open stars), � � 0:25 and ~	d? � 0:3184
(open triangles) and ~	d? � 1:2111 (open diamonds). The solid
lines and solid symbols are analytical and MC results without
counterions (� � 0:028 lower branch, � � 0:25 upper branch).
The inset shows the ratio ~	?=~	d? as a function of � for � � 0:2
(open squares) and � � 1000 (open triangles), ~	d? � 0:3184 in
both cases. The solid lines and solid symbols are analytical and
MC results without counterions (� � 1000 lower branch, � �
0:2 upper branch).
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the long-wavelength limit as predicted on the mean-field
level for single membranes [14–16] and for multimem-
brane systems [17]. Conversely, in the strong-coupling
limit, electrostatic correlations effects tend to decrease
the bending rigidity with a pronounced wavelength de-
pendence [18–20]. Experimentally, both membrane stiff-
ening [21] and, for highly charged membranes, softening
has been observed [22]. The membrane roughness re-
sults from a sum of the membrane propagator over the
entire q-mode spectrum, ~	2

? � �2�=~aNL�
2P

~qh~h
2
~qi. Since

the roughening is most pronounced for small coupling (see
Fig. 3), we conclude that charged membranes that can form
protrusions exhibit in the weak-coupling limit a scale-
dependent rigidity that must be highly reduced for small
length scales and thus overcompensates the large-scale
stiffening.

To understand the membrane roughening better, we
calculate via exact enumeration and within harmonic ap-
proximation the membrane roughness for a charged dis-
crete membrane without counterions. The roughness ratio
from this analytical calculation is shown in Fig. 3 by solid
lines, and compared with MC simulations of the corre-
sponding system without counterions (filled symbols).
Perfect agreement between filled symbols and solid lines
shows that the harmonic approximation is valid. Good
agreement between solid lines and the MC data that in-
clude counterions (open symbols) further shows that the
roughening effect is indeed due to the repulsion of charges
on the membrane itself, and counterions play a minor role.
12810
Experimentally, this membrane roughening might be ob-
servable with diffuse x-ray scattering; since it is due to a
membrane softening at short length scales, it will also be
present at finite ionic strength, as long as the average
distance between membrane ions is smaller than the bulk
screening length.
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