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Granular Dynamics in Compaction and Stress Relaxation
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Elastic and dissipative properties of granular assemblies under uniaxial compression are studied both
experimentally and by numerical simulations. Following a novel compaction procedure at varying
oscillatory pressures, the stress response to a step strain reveals an exponential relaxation followed by
a slow logarithmic decay. Simulations indicate that the latter arises from the coupling between damping
and collective grain motion predominantly through sliding. We characterize an analogous “glass
transition” for packed grains, below which the system shows aging in time-dependent sliding correlation

functions.
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Mechanically agitated granular materials are character-
ized by slow relaxation dynamics, arising from the re-
arrangement of the constituent grains within the volume
in which they are confined [1]. This leads to a slow
compaction of the system volume, which follows a loga-
rithmic decay in time, as seen in several experiments and
predicted by theoretical models of granular compaction
[2,3]. This property has prompted analogies between the
physics of athermal granular materials and thermal glasses,
the theory of which is better understood at the fundamental
level [1]. The field of granular matter therefore benefits
from such parallels, as new ways of investigating the
system’s complex properties are discovered. An advantage
of using granular materials over glasses is that it facilitates
a much easier exploration of the microstructure through
grain-grain interactions.

Logarithmic relaxation and rate-dependent strengthen-
ing have also been observed in compressed granular matter
[4], although the underlying mechanism is still under much
debate. The collective rearrangement of the grains in the
bulk could be responsible for the slow relaxation, as sug-
gested by experiments on slowly sheared granular materi-
als by Hartley and Behringer [4]. On the other hand, it is
also known that aging occurs at the contacts between the
particles [5], which manifests itself as a logarithmic in-
crease of the friction coefficient between grains as a func-
tion of time. It could also be responsible for the observed
slow dynamics, as has been suggested in experiments by
Ovarlez et al. and Nasuno et al. [6,7], which show rate
dependence and slow strengthening characteristics of
aging at the interparticle contacts, respectively.

The goal of this Letter is to demonstrate the existence of
slow relaxation in the response of dense granular matter to
infinitesimal strain perturbations and to elaborate on the
origin of the dynamics. The experiments reveal a very slow
stress relaxation under a constant applied differential
strain. This behavior is well characterized by a two-step
relaxation dynamics, analogous to the slow relaxation in
“glassy” systems [1].
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We investigate this dynamics via computer simulations,
which employ various dissipative processes into the system
in order to compare their relative effects. The results show
that the main process responsible for the logarithmic stress
relaxation is the collective particle motion and rearrange-
ments of grains, predominantly through sliding. We com-
pute the fraction of sliding particles and find that when the
damping in the system exceeds a critical value, a slow
increase in the number of sliding particles as a function
of time is observed. This slow strengthening leads to the
logarithmic stress relaxation. Moreover, the system shows
the hallmark of glassy behavior: aging in the sliding cor-
relation function.

Experimental arrangement.—We use an INSTRON
press to measure the mechanical properties of granular
assemblies confined in a cylindrical cup and piston. The
machine was strain controlled and enabled oscillatory,
step, and ramp compressional tests up to a maximum limit
of 300 kN load. The cylinder cup had the following di-
mensions: diameter d = 5.08 cm, height & = 7.62 cm,
and wall thickness [/ = 0.85 cm. These dimensions were
chosen to achieve a good statistical ensemble for nearly
monodisperse glass beads of diameter (355 * 5) um. We
perform two tests: first, we measure the strain response
(compaction) under large stress oscillations, and then we
measure the stress response under an infinitesimal step-
strain perturbation.

Compaction experiments (stress-controlled).—Before
performing the stress relaxation experiments it was neces-
sary to develop a method of reaching the jammed state,
ensuring that reproducible experiments can be performed.

Here we introduce an alternative method to the one of
Knight et al. [2] of compaction based on oscillatory pres-
sure of varying amplitude to generate reversible jammed
states. The compaction procedure consists of the stages
depicted in Fig. 1, where we show the displacement of the
piston Ah during the application of the stress o. The
material is first compressed with a constant, slow velocity
of 0.1 mm/ min to a target stress of 0.5 MPa (from A to B
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FIG. 1. Compaction procedure: Sinusoidal displacement A% of
the system height in response to an oscillatory stress around the
mean value of 0.5 MPa (from B to C) and 1 MPa (from E to F).
The solid black line is the window average displacement of the
height and shows the logarithmic behavior of the strain under
large stress amplitude according to Eq. (1) for the later stages of
the time evolution. The shaded gray area symbolizes the ampli-
tude of the oscillatory strain response. The inset shows a sche-
matic of the experimental arrangement.

in Fig. 1, which shows only the strain response), then
oscillated between zero and double the mean value with
a frequency of 1 Hz (from B to C, the amplitudes of
oscillation are always taken as equal to the mean value).
Each compaction procedure consists of 3600 cycles (until
C), after which the material is again slowly released to its
uncompressed state (from Point C at ¢ = 0.5 MPa to D at
o = 0). The final height of the material after the compac-
tion cycle is calculated at Point D, Al s \p,, and used to
obtain the volume fraction at the given stress amplitude.
The sequence is then repeated for increasing values of the
mean stress at 1 MPa (D — E — F — G) and the corre-
spondingly larger amplitudes of oscillation lead to a new
height and packing density Ak, yp, for the new oscillatory
stress.

The dynamics of compaction is well described by a
logarithmic dependence of Ah(¢) for each compaction
cycle valid for long times:

Ah() ~ = In(z). (1)

At short times, it crosses over to a faster decay. This
implies that the density behaves as ~1/In(¢) at long times
in agreement with previous experiments [2]. This is shown
in Fig. 1 as the solid line from B to C and from E to F. The
relaxation is so slow that one could argue that the final
steady-state density has not been achieved on the time
scale of the experiment.

The volume fraction after each compaction cycle is
plotted against the amplitude of oscillatory stress in
Fig. 2. The protocol involves a stepwise ramp of compac-
tion cycles from zero stress amplitude to 4 MPa, then back
to zero, and back again to 4 MPa. The figure shows an
irreversible branch as the mean stress is first increased,
until a plateau in the volume fraction is reached. As the
stress is then reduced the system enters into the reversible

1 2 3
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FIG. 2 (color online). Volume fractions obtained by oscillatory
compression experiments at varying oscillatory stress ampli-
tudes. The final heights at D and G in Fig. 1 are used to calculate
the volume fractions shown in this figure.

branch of compaction. By ramping up and down in oscil-
latory stress we find that the system reproduces the same
curve. These are the reversible jammed states that we use
as the reference states in the stress relaxation experiments.

Stress relaxation experiments (strain-controlled).—It is
important to distinguish between processes related to large
scale deformations in granular compaction studied above
and infinitesimal perturbations related to supporting the
stress once the volumetric conditions have been satisfied.
In the latter, an application of an external stress will result
in dissipation mechanisms quite different from the com-
paction process. Therefore, we next probe the mechanisms
of energy dissipation of the fully compacted system by
performing infinitesimal step compression experiments
and observing the resulting response in the stress.

We perform uniaxial compression tests with the plate-
cup configuration used above. We contract the system by
applying a step strain Ae in the range (1-3) X 1073 to
the glass bead sample at a given confining pressure.
Meanwhile, we monitor the temporal evolution of the
differential stress, Ao (¢). It is defined as the difference
between the stress at time ¢ measured after the strain is
applied and the stress before the perturbation is applied. It
follows that Ag(0) is the change in stress between the
baseline (stress before perturbation) and just after the
perturbation is applied [8].

Figure 3 shows the resulting relaxation at different con-
fining pressures from 0.1 to 5 MPa. At the slowest strain
rate of Aé = 6.6 X 107> s~! we find a relaxation which is
logarithmic in time, at long times. When we repeat the
experiment at the maximum speed allowed by the press,
Aé =9.8 X 1073 s7!, we are able to observe the “instan-
taneous’ stress response in addition to the subsequent
relaxation. In this case we find a two-step relaxation, which
is well approximated with the following equation, plotted
in Fig. 3 for the 4 MPa stress relaxation:

Ao(1)/Ac(0) = A + Be™ /" — Cln(s), )

where 71 = 1.4 s is the fast relaxation time and A = 0.9,
B = 0.09 are constants, and C = 2 X 1073 sets the rate of
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FIG. 3 (color online). Experiments: stress relaxations at differ-
ent confining pressures. Results are shown for two strain rates.
The fastest one reveals the two-step relaxation.

the slow relaxation. Since the slow strain rate corresponds
to a straining time of 7 = 21.6 s and the fast rate to 7 =
0.18 s for the case of the 4 MPa sample, the fast relaxation
is only observed in the latter experiment, as the relaxation
time 7, is slower than the application of the strain.

We argue, by analogy with glassy dynamics, that the fast
relaxation is a single particle relaxation mechanism
whereas the slow is representative of a collective re-
arrangement of many grains via sliding and their ensuing
“aging” properties. We provide supporting evidence for
this claim by means of molecular dynamic simulations.

Computer simulations.—In order to decipher the main
microscopic mechanism, we perform a numerical study
based on molecular dynamics of elasto-frictional spherical
particles.

Interparticle forces are computed using the principles of
contact mechanics and consider normal Hertz forces F,,
tangential Mindlin forces F,, and dry Coulomb friction
F, = pF,, with u the friction coefficient. Full details
are given in [9].

We provide two principal mechanisms of dissipation. If
the grains are touching, they exert contact damping forces,
which arise from viscoelastic dissipation between the
grains: fi = —y,£'2¢ and fi = —y,£/%5 [10].
Reference values for the damping constants vy, and 7,
can be obtained from [11]. Furthermore, the grains are
immersed in a viscous fluid, such as air or water, which
causes global damping according to the classical Rayleigh
theory. The drag of a sphere immersed in a viscous fluid is
Fi¢ = 67rmRX, where 7 is the viscosity of the fluid (an
analogous expression holds for torque damping) [11].

The packings were equilibrated at a given pressure of
1 MPa according to the previously established method [9].
We probe the macroscopic mechanical properties by ap-
plying an infinitesimal step strain, and we monitor the time
dependence of the stress, thus mimicking the experiments.

We find a critical damping (both for global and contact),
above which the slow relaxation ensues. The critical values
are y¢ =2 X 1073 kg/s m'/2, y¢ =2 X 107 kg/s m'/?,
while the critical global viscosity is ¢ = 1.7 X 10™* Pas

[12]. In Fig. 4(a) we show typical relaxation curves ob-
tained for three systems: with global damping only (n >
7°), or with contact damping only (y, > v&, ¥ > ¥f), or
with critical contact damping (y, = y5, v; = ¥5), which
dissipates energy mainly via Coulomb friction. We see that
the curves with damping larger than the critical value are in
good qualitative agreement with those from the experi-
ment, displaying slow stress relaxation at long times, while
the curve with mostly frictional dissipation decays very
fast. Comparing with real viscoelastic constants for com-
mon glass materials [11] and the viscosity of air or water,
we find that real viscoelastic damping is almost always
above the critical values. Thus, in most experimental situ-
ations, except perhaps in vacuum, the system will be over-
damped and the slow relaxation will be observed.
Considering that we have the full information on the
motion of the particles, we now investigate the microscopic
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FIG. 4 (color online). Simulations: (a) stress relaxation after an
instantaneous step strain at 1 MPa. Solid triangles (red online)
correspond to a system with global damping n = 1.7 X
1073 Pas >n¢, open circles (blue online, also in the inset) to
an overdamped system with contact damping 7y, =2 X
1072 kg/s m'/2, y, =2 X 1073 kg/s m'/2, and black open
squares (also in the inset) to a system with critical contact
damping. The inset shows the behavior of the fraction of the
particles sliding in the aging regime and at the critical point.
(b) Sliding-sliding correlation function showing the appearance
of aging (dependence on ¢,) above the critical damping. The
black line show the behavior below critical damping. Insets show
the stretched exponential exponent B and the characteristic
relaxation time 7, versus f,,.
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origin of the slow relaxation. By monitoring the small
displacements of the particles we find that the shear dis-
placements are key to explaining the relaxation mecha-
nism. The inset of Fig. 4(a) shows the fraction of particles
that are sliding (F, = wF,) in the system at a given time
(for these particles the shear displacement is significant). If
the system is underdamped (y < ¢, for both normal and
shear), this fraction decays rapidly to zero and the stress is
quickly relaxed. On the other hand, when the system is
overdamped (y > y¢) the fraction of sliding particles in-
creases as a function of time, analogous to the strengthen-
ing behavior found in previous experiments [7]. This slow
dynamical strengthening (which may saturate at larger
times) is responsible for the slow stress relaxation.

To further investigate the features of the overdamped
state we study the time correlation function of the sliding
grains to quantify their motion. At a given time step we
construct a state vector 5(¢) with M components (M is the
number of contacts in the system), the ith component being
1 or —1 according to whether the ith contact is sliding or
not. We consider a time correlation function C(t,1t,,) =
(s(t + 1,,)5(¢,,)) with a dependence on the waiting time,
t,,, measured from the time when the perturbation is ap-
plied. Below the critical damping condition we find
[Fig. 4(b)] that the C(s, 1,,) decays rapidly with no evidence
of ¢t,, dependence. With small damping forces the grains in
the system have no time to develop significant shear dis-
placements. The number of sliding particles is very small
and the system does not display any slow relaxation.

In contrast, above critical damping we find [Fig. 4(b)] a
stretched exponential decay C(z,1,,) ~ exp[—1/7/(1,)]?,
where 7,(t,,) is the characteristic time dependent on the
waiting time and B = 0.8 is the critical exponent [see
insets of Fig. 4(b)]. Large damping sufficiently slows
down the system such that the grains have enough time
to develop substantial tangential displacements, which in
turn generate shear forces large enough to cause sliding of
the grains. Interestingly, the same effect has also been
found in the history-dependent behavior of packings near
the jamming transition, in this case, as a function of the
compression rate [13]. The fact that both damping and
compression can drive the system into a glassy phase
through a well-defined transition, which exhibits aging,
carries important implications.

Whereas the transition between an underdamped and
overdamped state is not surprising, it is intriguing that
the latter state shows signatures of glassy behavior.
Conventional glassy systems such as polymer melts
undergo the glass transition by fast cooling of the system,
while here we show that in granular athermal systems the
damping plays a similar role to temperature. A granular
“glass transition” driven by damping opens interesting
unifications between the two types of systems, the details
of which we plan to test experimentally in further work.
Since damping facilitates dissipation by friction as the time
scale of grain contacts is prolonged, we predict that a

packing of frictionless droplets in emulsions would not
experience the observed slow relaxation and aging dynam-
ics. In fact our simulations indicate that a system with
frictionless particles, u = 0, as well as a system of infi-
nitely rough particles, u — o0, does not display aging, thus
confirming that the glassy properties are due to the finite
friction coefficient of grains.

In summary, in this work we distinguish between stress
relaxation processes related to reaching a granular jammed
equilibrium state and the remaining infinitesimal relaxa-
tion. Once the system is jammed at a given pressure, the
stress relaxation is characterized by a fast exponential
relaxation followed by a glassy slow logarithmic decay.
The glassy phase is characterized by the aging of the
sliding correlation function and the ensuing stretched ex-
ponential behavior, which are in turn responsible for the
slowdown of the dynamics. It is interesting to note that the
amplification of the sliding could be associated with the
initiation of an avalanche inside the system.
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