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Persistent Supersolid Phase of Hard-Core Bosons on the Triangular Lattice
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We study hard-core bosons with unfrustrated hopping (t) and nearest neighbor repulsion (U) (spin S �
1=2 XXZ model) on the triangular lattice. At half filling, the system undergoes a zero temperature (T)
quantum phase transition from a superfluid phase at small U to a supersolid at Uc � 4:45 in units of 2t.
This supersolid phase breaks the lattice translation symmetry in a characteristic
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pattern, and is
remarkably stable—indeed, a smooth extrapolation of our results indicates that the supersolid phase
persists for arbitrarily large U=t.
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FIG. 1 (color online). (a) A flippable pair of spins, and map-
ping to dimers. (b) Actual T � 0 phase diagram and nature of
spatial symmetry breaking in the supersolid phase. Darker bonds
and sites indicate higher kinetic energy and density, respectively,
and the state shown corresponds to �K � �n � 0.
Introduction.—The observation of strongly correlated
Mott insulating states and T � 0 superfluid-insulator tran-
sitions of ultracold bosonic atoms subjected to optical
lattice potentials [1] has led to a great deal of interest in
strongly correlated lattice systems that can be realized in
such experiments [2,3]. The recent observation of a super-
solid phase in helium [4] leads, in this context, to a natural
question: can the lattice analog of this, namely, a superfluid
phase that simultaneously breaks lattice translation sym-
metry, be seen in atom-trap experiments?

One class of promising candidates are systems which are
superfluid when interactions are weak, but form insulators
with spatial symmetry breaking when interactions are
strong: in terms of conventional Landau theory, a direct
transition between these two states is generically either
first order, or preempted by an intermediate supersolid
phase with both order parameters nonzero; both types of
behavior are known to occur in specific lattice models [5–
7]. Moreover, as has been shown recently by Senthil et al.
[8], conventional Landau theory can fail in certain situ-
ations in which quantum mechanical Berry phase effects
produce a direct second-order phase transition, thereby
ruling out an intermediate supersolid phase. When such a
transition occurs [9,10], it is associated with quasiparticle
fractionalization and deconfinement, and this alternative to
an intermediate supersolid phase is thus interesting in its
own right.

Bosons on the triangular lattice with on-site repulsion V,
repulsive nearest neighbor interaction U, and unfrustrated
hopping (t) provide a particularly interesting example in
this context since the structure of interactions is simple
enough that it can be realized in atom-trap experiments
[2,11]. In the hard-core V ! 1 limit [which is also experi-
mentally feasible [2,11] ] this maps to a system of S � 1=2
spins (Szi � ni � 1=2 where ni is the boson number at site
i) with antiferromagnetic exchange Jz � U between the z
components of neighboring spins, ferromagnetic exchange
J? � 2t between their x and y components, and magnetic
field in the z direction equal to the chemical potential �. It
is this hard-core limit we consider in some detail below at
zero chemical potential.
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Clearly, the ground state in the limit U=t! 0 must be a
featureless superfluid. On the other hand, the interaction
energy U dominates in the U=t! 1 limit and leads to
frustration since it is impossible to have all pairs of neigh-
boring spins pointing antiparallel to each other along the z
axis on the triangular lattice. The ground state in this limit
is thus expected to live entirely in the highly degenerate
minimally frustrated subspace of configurations with pre-
cisely one frustrated bond (parallel spins) per triangle, and
is selected by the dynamics associated with the hopping
term t. The minimally frustrated subspace can be conve-
niently represented by noting that each state in this sub-
space corresponds to a perfect dimer cover of the dual
hexagonal lattice (with every frustrated bond on the trian-
gular lattice mapping to a dimer placed on the dual link
perpendicular to the bond in question). In this language, the
effective Hamiltonian in the U=t! 1 limit is then a
quantum dimer model with a ring-exchange term that
operates on each pair of adjacent hexagons of the dual
lattice (see Fig. 1).

Quantum dimer models with ring-exchange on indi-
vidual plaquettes of two-dimensional bipartite lattices
quite generally have crystalline ground states in which
the spatial arrangement of dimers breaks lattice symmetry
[12,13]. In our problem, a wave function that gains kinetic
energy from the double-hexagon ring-exchange process on
a maximal set of independently flippable hexagon pairs
6-1 © 2005 The American Physical Society
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(see Fig. 1) provides a similar candidate lattice symmetry
breaking insulating state at large U=t (see Fig. 1). Note,
however, that this analogy to simpler quantum dimer mod-
els misses the important U�1� symmetry associated with
charge conservation. Alternatively, one can focus on this
U�1� symmetry at large U=t by thinking in terms of super-
fluid wave functions projected into the minimally frus-
trated subspace: clearly, superfluidity can survive in such
a projected state since the minimally frustrated manifold
admits considerable charge fluctuations, and such wave
functions also provide substantial kinetic energy gain
[14]. The breaking of lattice translation symmetry that
seems natural by analogy to the simpler quantum dimer
models then motivates a large-U variational ground state
obtained by projecting a supersolid wave function [14].
This suggests that the ‘‘intermediate’’ supersolid phase of
Landau theory may, in fact, persist to large U in this case
(another argument for a supersolid state, broadly consistent
with our results, was given in Ref. [15], while Ref. [16] had
correctly noted the persistence of superfluidity at � � 0).

While these considerations are not definitive, they do at
least emphasize that the behavior of this system at inter-
mediate and large U presents very interesting possibilities,
and a detailed numerical study is one way to decide be-
tween them. In the present work, we use quantum Monte
Carlo (QMC) methods to perform such a numerical study.
Our results for the different T � 0 phases are shown in
Fig. 1. To summarize, we find that the superfluid at smallU
undergoes a transition to a supersolid phase at Uc � 4:45
in units of 2t. This supersolid phase breaks lattice trans-
lation symmetry in a characteristic
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pattern shown
in Fig. 1, and appears to be indeed stable for arbitrarily
large values of U=t.

Model and method.—Our Hamiltonian reads

H �
X

hiji

�U�ni � 1=2��nj � 1=2� � t�byi bj � bib
y
j �	

�
X

i

�V�ni � 1=2�2 ��ni	; (1)

where hiji refer to nearest neighbor links of the two-
dimensional triangular lattice, ni is the particle number at
site i, and byi is the boson creation operator at site i. In this
work, we take the limit V ! 1 to enforce the hard-core
constraint, thereby mapping it to the S � 1=2 spin model
as mentioned earlier, set t to 1=2, and take � � 0. We use
the well-documented stochastic series expansion (SSE)
QMC method [17–19] which efficiently samples the
high-temperature expansion of the grand-canonical parti-
tion function. [At large values of U=t, some modifications
to the standard algorithm become necessary [20].]

Most of our data are on L� L samples with periodic
boundary conditions and L a multiple of six ranging from
12 to 48 at inverse temperatures � ranging from 10 to 30.
Our choice of boundary conditions and aspect ratio en-
sures that all the lattice symmetries are preserved after
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imposing the boundary conditions (see Fig. 1). The nature
of the T ! 0 phase and its low energy spectrum of ex-
cited states is conveniently characterized by the superfluid
density �s, and the momentum ( ~q) and imaginary time (�)
dependent correlation functions C�� ~q; ��, C��

0

K � ~q; �� of
local particle density and kinetic energy, respectively (�
and �0 refer to the three possible bond orientations
T0=1=2 shown in Fig. 1). We use standard SSE estima-
tors [19] to calculate �s, C�� ~q; � � 0�, S�� ~q; !n � 0� �R�

0 d�C�� ~q; ��, C��
0

K � ~q; � � 0�, and S��
0

K � ~q; !n � 0� �R�
0 d�C

��0
K � ~q; ��. These momentum space correlation func-

tions are an unbiased probe of spatial order in the system.
By analyzing the L and � dependence of the Bragg peaks
at 
 ~Q � 
�2�=3; 2�=3� seen in the equal time and static
correlation functions of density and kinetic energy, we
conclude that spatial order is established at these wave
vectors when lattice translation symmetry is broken in
the supersolid phase (in the convention used above, the
components of ~Q refer to projections in directions T0 and
T2 shown in Fig. 1).

We also measure two complex order parameters sensi-
tive to this spatial symmetry breaking to obtain a better
characterization of the supersolid state. These are defined
as

 n � nA � nBe2�i=3 � nCe4�i=3;

 K � Ka � Kbe
2�i=3 � Kce

4�i=3:
(2)

Here the subscripts refer to the three-sublattice decompo-
sition of the triangular lattice into A, B, C type sites, and
a � BC, b � CA, c � AB type bonds, respectively, while
n and K are the densities and kinetic energies on the
corresponding sites and bonds.  K may be obtained from
the Fourier components of the kinetic energies in the three
lattice directions, K�0=1=2�

~Q
, using the relation  K �

e4�i=3K�0�~Q � e
2�i=3K�1�~Q � e

4�i=3K�2�~Q , while  n is precisely

equal to n ~Q, the Fourier component of the density at the

ordering wave vector ~Q. We expect both order parameters
to average to zero as long as our algorithm remains ergo-
dic—the probability distribution of their phases �K and �n,
however, provides useful information regarding the nature
of the supersolid phase.

Numerical results.—Our numerical results for the varia-
tion in the superfluid density �s as a function of U are
shown in Fig. 2. Each point shown in Fig. 2 represents an
extrapolation of available data to the T � 0 thermo-
dynamic limit (Fig. 3). The results summarized in Fig. 2
show no indication of any finite U=t quantum phase tran-
sition beyond which �s may become zero at zero tempera-
ture. Indeed, a smooth extrapolation of our data suggests
that superfluidity persists in the low-temperature limit at all
finite values of U, albeit with an increasingly small T � 0
value of �s. While this is surprising from the perspective of
6-2



FIG. 2 (color online). Superfluid density �s and density wave
order parameter m2 � S�� ~Q;!n � 0�=�L2 extrapolated to
T ! 0 and L! 1.
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putative valence bond solid (VBS) ground states of the
corresponding quantum dimer model, further insight can
be obtained by performing a variational calculation using
projected superfluid wave functions [14].

Although superfluidity survives in the entire range of U
studied, the state at small U is not continuously connected
to that at large U. Indeed, we see clear evidence for a
continuous T � 0 quantum phase transition at Uc � 4:45.
This transition point is estimated using standard criteria in
terms of Binder cumulants as shown in Fig. 4. For U >Uc,
the system spontaneously breaks lattice symmetry to pro-
duce a supersolid phase. To understand the nature of the
supersolid phase, it is useful to analyze the joint probability
distribution of �� � �� 1=2 and the phases �K and �n
(Fig. 5). At U � 10, we see that �K is essentially pinned to
be equal to �2�n (modulo 2�) at low temperature and
large L, while �n has a distribution which peaks at �pn �
2�p=6 with p an integer from 0 to 5. The picture that
FIG. 3 (color online). Extrapolations implicit in Fig. 2 shown
here for two values of U.
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emerges (and gets sharper at larger L and �) is thus of a
state in which a relatively more mobile fluid of density �hx

living on a hexagonal lattice backbone of the full lattice is
responsible for the superfluidity, while the centers of the
hexagons have an average density of �c that is less mobile.
The six values of p correspond to three possible hexagonal
backbones of a triangular lattice in conjunction with two
choices for the sign of �hx � �c. Note that this spatial order
is accompanied by a very slight deviation of the total
density � from 1=2 (which survives in the T � 0 thermo-
dynamic limit), with the sign of deviation given by that of
�hx � �c. We have also monitored these histograms at
larger U & 40. We find that �K remains strongly pinned
to �2�n, and while the pinning of �n and �K individually
does become weaker (as does the �n dependence of ��),
the basic picture of the supersolid state remains the same.

Landau theory.—Much of this picture of the supersolid
phase can be understood within the framework of a Landau
theory written in terms of the order parameters  n and  K
(while it is not necessary to do so, we find it convenient to
explicitly include  K in our description). For our purposes
here, it suffices to consider only the ‘‘potential energy’’
terms of the Landau theory and leave out all fluctuation
terms that involve spatial and time derivatives, or couplings
to the superfluid order parameter, although these can also
be straightforwardly written down. Terms in the Landau
theory are constrained by the requirement of invariance
under all the symmetries of the system. The action of these
on our order parameters is simple to state: under both
lattice translations T0 and T2 we have  n ! e2�i=3 n,
 K ! e2�i=3 K, while under a �=3 rotation about a A
sublattice site, we have  n !  �n,  K !  �K. Finally,  n
is odd under particle-hole transformations, while  K is
even. Terms consistent with these symmetries at � � 0
give, up to sixth order,
FIG. 4 (color online). Binder cumulant g � 1� hm4i=3hm2i2

as a function of U in the transition region. From the location of
the crossing point we identify a T � 0 phase transition to the
supersolid phase at U � 4:45. Inset: histogram of j nj has a
single peak, indicating a second-order transition.
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FIG. 5 (color online). Top panels: histogram of �� 1=2; �n
dependence of �. Bottom panels: probability distribution of �n
�K � 2�n, and �K .
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Spot� n;  K� � f�j nj2; j Kj2� � c�n� 
6
n �  �6n �

� c�K � 
3
K �  

�3
K � � cnK� 

2
n K �  �2n  �K�:

(3)
As usual, spatial symmetry breaking corresponds to the
function Spot developing a minimum at a nonzero value of
j nj. The detailed nature of the ordering is determined by
the signs of coefficients c which fix the relative as well as
absolute phases of the two order parameters. The results
shown for U � 10 in Fig. 5 can be modeled by taking all c
negative, and this translates to the schematic picture of the
phase shown in Fig. 1. In addition, the very slight �n
dependence of �� 1=2 can be modeled [21] by the pres-
ence of a coupling term ��� 1=2�� 3

n �  
�3
n � with a tiny

positive coefficient.
Discussion.—We have thus established the presence of

a remarkably persistent [in contrast to earlier examples
[5,6] ] low-temperature supersolid phase on the triangular
lattice, which may lend itself to observation in atom-trap
experiments. Indeed, a smooth extrapolation of our data
indicates that the supersolid phase persists in the U=t! 1
limit. At finite temperature, in the absence of any coupling
between spatial and superfluid order parameters, super-
fluidity would be lost by a Kosterlitz Thouless (KT) phase
transition, while crystalline order would be lost via two KT
phase transitions with an intermediate power-law ordered
crystal phase [22] analogous to that seen in the transverse
field Ising antiferromagnet on the same lattice [23,24]. The
coupling between the two order parameters is expected to
modify the detailed nature of the finite temperature phase
diagram; this will be reported on separately [20]. Our
12720
evidence indicates that the supersolid is not destabilized
by doping [20], and this has been independently confirmed
in parallel work (which is also in broad agreement with our
results at � � 0) [25].
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Note added.—Recently, we became aware of parallel
work [21], and would like to thank its authors for corre-
spondence comparing our differing conclusions regarding
the nonzero value of �� 1=2 in the supersolid phase.
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