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We determine the phase diagram of hard-core bosons on a triangular lattice with nearest-neighbor
repulsion, paying special attention to the stability of the supersolid phase. Similar to the same model on a
square lattice we find that for densities � < 1=3 or � > 2=3 a supersolid phase is unstable and the
transition between a commensurate solid and the superfluid is of first order. At intermediate fillings 1=3<
�< 2=3 we find an extended supersolid phase even at half filling � � 1=2. The emergence of the
supersolid on the triangular lattice reflects a novel and interesting way for a quantum system to avoid
classical frustration, similar to an order-by-disorder mechanism. It also offers an exciting possibility of
realizing such phenomena in ultracold atoms on optical lattices.
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Next to the widely observed superfluid and Bose-
condensed phases with broken U�1� symmetry and ‘‘crys-
talline’’ density wave ordered phases with broken transla-
tional symmetry, the supersolid phase, breaking both the
U�1� symmetry and translational symmetry, has been a
widely discussed phase that is hard to find both in experi-
ments and in theoretical models. Experimentally, evidence
for a possible supersolid phase in bulk 4He has recently
been presented [1], but the question of whether a true
supersolid has been observed is far from being settled
[2,3], leaving the old question of supersolid behavior in
translation invariant systems [4,5] unsettled for now.

More precise statements for a supersolid phase can be
made for bosons on regular lattices. It has been proposed
that such bosonic lattice models can be realized by loading
ultracold bosonic atoms into an optical lattice, where the
required longer range interaction between the bosons could
be induced by using the dipolar interaction in chromium
condensates [6], or an interaction mediated by fermionic
atoms in a mixture of bosonic and fermionic atoms [7].
With the recent realization of a Bose-Einstein condensate
(BEC) in chromium atoms [8], these experiments have now
become feasible, raising the interest in phase diagrams of
lattice boson model, and particularly in the stability of
supersolids on lattices.

The question if a supersolid phase is a stable thermody-
namic phase for lattice boson models has been controver-
sial for many years. Mean-field and renormalization group
calculations [9–12] have predicted supersolid phases for
many models, including the simplest model of hard-core
bosons with nearest-neighbor repulsion on a square lattice
with Hamiltonian
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where ayi �ai� creates (destroys) a particle on site i, t de-
notes the nearest-neighbor hopping, V a nearest-neighbor
repulsion, and � the chemical potential. Subsequent nu-
merical investigations using exact diagonalization and
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quantum Monte Carlo (QMC) methods [13–17] have
shown that for this model, the supersolid phase is unstable
and phase separates into superfluid and solid domains at a
first-order (quantum) phase transition. Recently, this oc-
currence of a first-order phase transition was explained by
showing that a uniform supersolid phase in a hard-core
boson model is unstable towards the introduction of do-
main walls, lowering the kinetic energy of the system by
enhancing the mobility of the bosons on the domain wall
[16]. In a related work it has been proposed that superfluid
domain walls might be an explanation for the experimental
observation of possible supersolidity in helium [3,18].

To stabilize a supersolid on the square lattice, the kinetic
energy of the bosons in the supersolid has to be enhanced
either by sufficiently reducing the on-site interaction to be
less than 4V [16], by adding next-nearest-neighbor hop-
ping terms [17], or by forming striped solid phases with
longer-ranged repulsions [13,19].

In this Letter we consider the interplay of supersolidity
and frustration by studying the hard-core boson model (1)
on a triangular lattice. In the classical limit t � 0 two solid
phases exist at fillings � � 1=3 (and � � 2=3), where one
of three sites is filled (empty) in a
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ordering with
wave vector Q � �4�=3; 0� [20], shown in the insets of
Fig. 1. At half filling �� � 1=2�, where the square lattice
shows a solid ordering with wave vector ��;��, the solid
order is frustrated on the triangular lattice, and the classical
model has a hugely degenerate ground state with an ex-
tensive zero-temperature entropy [21].

The question arises whether this degeneracy of the
classical system at half filling is lifted when quantum
dynamics is added at a finite hopping parameter t, and
which phase gets stabilized. Mean-field studies have pre-
dicted a supersolid phase [22]. Given the questionable
reliability of mean-field calculations in the case of the
square lattice model a numerical check is needed.

We have thus performed a series of high-accuracy nu-
merical QMC calculations on large lattices using stochastic
series expansions [23] with global directed-loop updates
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FIG. 1 (color online). Zero-temperature phase diagram of
hard-core bosons on the triangular lattice in the canonical
ensemble obtained from quantum Monte Carlo simulations.
The regions of phase separation are denoted by PS. The insets
exhibit the density distribution inside the solid phases for � �
1=3 (lower panel) and � � 2=3 (upper panel).
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[24] for the hard-core boson model on the triangular lat-
tice and show the phase diagram in Figs. 1 and 2 for the
canonical and grand-canonical ensemble, respectively. The
main results are that for fillings � < 1=3 and � > 2=3 a
supersolid is unstable towards phase separation by exactly
the same domain-wall proliferation mechanism through
which the square lattice supersolid is unstable at all fillings
� � 1=2. In contrast, for intermediate densities 1=3< �<
2=3 we find that the degeneracy of the frustrated classical
model is indeed lifted and a stable supersolid phase
emerges. The phase diagram in Fig. 2 is similar to the
mean-field phase diagram [22], albeit with a substantially
reduced supersolid region. The supersolid is stable even at
half filling, contradicting the Green’s function Monte Carlo
results of Ref. [25], which are however intrinsically af-
fected by a population size bias.

We will now discuss the phase diagrams in more detail,
starting with simple limits. Considering the single boson
(hole) problem, one can show that the lattice is empty for
�<�0 � �6t and completely filled for �>�1 � 6�t�
V�. For large values of t=V, the bosons are superfluid, with
a finite value of the superfluid density �S, which we
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FIG. 2 (color online). Zero-temperature phase diagram of
hard-core bosons on the triangular lattice in the grand-canonical
ensemble obtained from quantum Monte Carlo simulations.
Second-order phase transitions are denoted by solid lines,
whereas first-order transitions are denoted by dashed lines.
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measure through the winding number fluctuations W of
the world lines [26] as �S � hW2i=�4�t�. Two solid phases
emerge upon lowering t=V with rational fillings 1=3 and
2=3, respectively. Both are characterized by a finite value
of the density structure factor per site, S�q�=N � h�q�

y
qi,

where �q � �1=N��ini exp�iq � ri� at wave vectors�Q �
��4�=3; 0�, corresponding to the
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ordering wave
vector. The maximum extent of the solid phases is reduced
by quantum fluctuations from the mean-field value of
�t=V�c � 0:5 down to �t=V�c � 0:195� 0:025.

Since the phase diagram is symmetric when interchang-
ing particles with holes ��! 1� �� we restrict our dis-
cussion from now on to � 	 1=2 and plot the density � as a
function of chemical potential � for cuts at constant t=V in
Fig. 3. For t=V � 0:1 we clearly observe a plateaux corre-
sponding to the � � 2=3 phase with broken translational
symmetry. The approach to this plateaux from � < 2=3 is
continuous, indicating a second-order phase transition,
while for � > 2=3 we see a jump caused by a first-order
phase transition. Measuring the density structure factor
S�q� and the superfluid density in Fig. 4 we identify this
as a first-order phase transition between the solid and
superfluid phases.

The situation here is the same as in the square lattice
model, where doping the solid leads to phase separation at
a first-order phase transition [16]: the uniform supersolid is
unstable towards domain-wall formation as illustrated in
Fig. 5. Adding L=3 bosons onto the solid at density � �
2=3 [Fig. 5(a)] corresponds to an infinitesimal density in
the thermodynamic limit. These bosons can gain a kinetic
energy of �6t2=V per boson by second-order hopping
processes. Placing these additional bosons along a line,
as shown in Fig. 5(b), costs no additional potential energy,
and we can even shift half of the lattice by one lattice
spacing, introducing a domain wall as shown in Fig. 5(c),
again at no potential energy cost. But now, the additional
bosons gain kinetic energy of �t per boson by hopping
freely across the domain wall, which lowers the energy of
the domain-wall state compared to the bulk supersolid, and
hence the supersolid phase is unstable.
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FIG. 3 (color online). Density of hard-core bosons on the
triangular lattice as a function of � along lines of constant
values of t=V. The inset displays the jump in the density as a
function of t for �=V � 4 at t=V 
 0:165.
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FIG. 6 (color online). Finite size scaling of the static structure
factor S�Q� and the superfluid density �S for hard-core bosons
on the triangular lattice at t=V � 0:1 and�=V � 3. Dashed lines
are extrapolations to the infinite lattice. The inset shows the finite
size scaling of the order parameter hcos�6��i.
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FIG. 4 (color online). Static structure factor S�Q� for hard-core
bosons on the triangular lattice as a function of � along a line of
constant t=V � 0:1. The inset shows the behavior of the super-
fluid density �S.
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A different situation exists for � < 2=3, since there is no
symmetry around � � 2=3. Here, forming a domain wall
would cost extra potential energy, and a supersolid phase
can thus be stabilized. To demonstrate the existence of this
supersolid even at half filling, we show the finite size
scaling of �S and S�Q� in Fig. 6, both of which extrapolate
to finite values. Intervening the solid phases at 1=3< �<
2=3 we hence find an extended supersolid phase, where
both the superfluid density and the density structure factor
take on finite values. Figure 7 shows �S and S�Q� as
functions of t=V at half filling, indicating a continuous
quantum phase transition from the supersolid to the super-
fluid at t=V 
 0:115. We observe a kink in �S�t� near the
transition point, marked by an arrow in Fig. 7. Away from
half filling, the extend of the supersolid phase slightly
increases, as shown in Fig. 2. Moreover, the kink in �S�t�
at the supersolid-superfluid transition becomes more pro-
nounced, being clearly visible for �=V � 3:4 in Fig. 8.
Eventually, for�=V > 3:95, the supersolid phase ceases to
be stable, giving rise to a direct first-order transition be-
tween the solid and the superfluid. This is reflected in
(b)(a)

(c) (d)

FIG. 5 (color online). The � � 2=3 solid doped with bosons.
(a) Additional bosons (open circles) added on top of the solid.
(b) Lining the bosons up costs no additional potential energy.
(c) Shifting the lower half of the lattice introduces a domain wall
(dashed line) at no cost, but now (d) the additional particles can
hop freely across the domain wall, gaining additional kinetic
energy.

12720
discontinuities of both �S and S�Q� in Fig. 8, as well as
in the density � (Fig. 3).

To summarize, we have demonstrated that an extended
supersolid phase exists for hard-core bosons on the trian-
gular lattice. This supersolid phase in the density regime
1=2< �< 2=3 emerges from a hugely degenerate disor-
dered ground state of the frustrated classical model (in the
t � 0 limit) when the quantum mechanical hopping is
turned on. This illustrates an intriguing mechanism by
which a quantum system can avoid frustration: in the low-
density region, � < 1=2, a fraction �� 1=3 of the bosons
delocalize and break the U�1� gauge symmetry, forming a
superfluid Bose condensate on top of the solid with density
� � 1=3, that breaks translational symmetry, thus realizing
a supersolid phase. An analogous picture holds for the
supersoild emerging from the 2=3 solid upon hole doping
for � > 1=2. In order to characterize the density distribu-
tion inside the supersolid phase at � � 1=2, we consider
the complex order parameter mei� � m1 �m2ei4�=3 �

m3e
�i4�=3 in terms of the three sublattice densities

ni � 1=2�mi, i � 1; 2; 3. A value of hcos�6��i> 0
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FIG. 7 (color online). Static structure factor S�Q� for hard-core
bosons on the triangular lattice as a function of t at half filling
��=V � 3�. The inset shows the behavior of the superfluid
density �S with a kink at t=V 
 0:12, indicated by an arrow.
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FIG. 8 (color online). Static structure factor S�Q� for hard-core
bosons on the triangular lattice as a function of t along lines of
constant �=V � 3:4 and �=V � 4. The inset shows the super-
fluid density �S, exhibiting a kink at t=V
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indicates sublattice density orderings �m1; m2; m3� �
��2m;�m;�m�, whereas hcos�6��i< 0 would corre-
spond to a �m;�m; 0� pattern [27]. From our simulations
we find that hcos�6��i crosses over from negative to posi-
tive values upon increasing the system size, as seen in the
inset of Fig. 6. This suggests that in the thermodynamic
limit the supersolid at � � 1=2 marks a first-order transi-
tion between the low- and high-density supersolid states. It
will be of interest to better characterize this quantum phase
transition between different supersolid phases as a function
of doping, as well as the thermal phase transitions.

The emergence of a supersolid on the triangular lattice is
a variant of an order-by-disorder [28] mechanism, in which
by the creation of a supersolid the degenerate disordered
classical ground state is avoided in the quantum system.
Since, in contrast to the square lattice, the realization of a
supersolid on the triangular lattice does not require longer-
ranged repulsion or hopping terms, nor a reduction of the
on-site interaction [16], the triangular lattice offers the
experimentally easiest possibility for realizing order-by-
disorder phenomena and supersolid phases of ultracold
atoms on optical lattices.
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Note added in proof.—Recently, we became aware of
similar work concentrating on the supersolid phase at
�=V � 3 [30–33]. While the authors of Ref. [30] argue
for a ��2m;�m0;�m0� ordering pattern with m0 � m, in
Ref. [31] a �m;�m; 0� pattern is proposed, whereas
Ref. [32] provides further evidence for the first-order
supersolid-supersolid transition at half filling.
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