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We study the effects of Kondo correlations on the transmission phase shift of a quantum dot coupled to
two leads in comparison with the experimental determinations made by Aharonov-Bohm (AB) quantum
interferometry. We propose here a theoretical interpretation of these results based on scattering theory
combined with Bethe ansatz calculations. We show that there is a factor of 2 difference between the phase
of the S-matrix responsible for the shift in the AB oscillations and the one controlling the conductance.
Quantitative agreement is obtained with experimental results for two different values of the coupling to
the leads.
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Quantum dots (QD), small puddles of electrons con-
nected to leads, can be obtained in a controlled fashion
because of recent progress in nanolithography. Under cer-
tain conditions a dot can be modeled as a localized spin
coupled to Fermi baths (the leads). A Kondo effect takes
place [1–3] when the temperature is lowered. A key in-
gredient of the Kondo effect is the phase shift � an electron
undergoes when it crosses the dot. While its direct mea-
surement was out of scope in bulk systems, it became
feasible recently in quantum dots via Aharonov-Bohm
(AB) interferometery [4]. We mention here the experimen-
tal results obtained in two cases corresponding to a strong
coupling to the leads [4,5]. In the unitary limit, the phase
shift climbs almost linearly with VG with a value at the
middle of the Kondo enhanced valley which is almost �.
At a smaller value of the coupling strength, the phase shift
develops a wide plateau at almost �. We call the latter case
the ‘‘Kondo regime.’’ Early theoretical work on the phase
shift for the bulk Kondo effect [6,7] predicts � � �=2. In
the context of QD, Gerland et al. [8] had obtained, on the
basis of numerical renormalization group and Bethe an-
satz calculations, a variation of � with the energy of
the localized state leading to a value of �=2 in the sym-
metric limit, in disagreement with the recent experi-
mental results quoted above [4,5]. In this Letter, we pro-
pose a new theoretical interpretation of the experimental
results based on scattering theory and Bethe ansatz calcu-
lations. Our main prediction concerns a factor of 2 differ-
ence found between the phase of the S matrix observed by
the phase shift measurements and the phase governing the
conductance.

Let us consider a quantum dot coupled via tunnel bar-
riers to two leads L and R, and capacitively to a gate
maintained at the voltage VG. The system can be described
[9,10] by a one-dimensional Anderson model with two
reservoirs L and R,
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Consider the elastic component of the S matrix, Ŝk�,
describing the scattering of a spin-� electron with momen-
tum k off the impurity. It is given by [6,10,11] Ŝk� �
C��Î � iT̂

res
k��, where C� is a multiplicative phase factor

and T̂res
k� is the T matrix with matrix elements given by

Tres;��
k� � 2�V�V����"k�G��"k � i��; (2)

where �;� � L or R, ���"k� is the density of states of
conduction electrons for � and "k, and G��"k � i�� is the
exact localized electron retarded Green’s function. Using
exact results [6,12] on the self-energy at T � 0 in an
interacting Fermi liquid, one can show that n0� �
1
� Im lnG���� i��. Friedel’s sum rule [12,13] requires
n0� to be equal to the change in the number of conduction
electrons with spin � resulting from the addition of the
impurity. Hence it is related to the transmission phase shift
�� at the Fermi level, n0� �

1
���. Therefore �� coincides

with the phase of the Green’s function at the Fermi level
G���� i��. If we denote the associated self-energy byP
���� i��, one gets G���� i�� � sin��e

i��=
Im����� i��. with Im����� i�� � ���V

2
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2
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����� [6,12] at T � 0 leading to
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In the case of a symmetric QD with VL � VR � V, one has
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FIG. 1 (color online). Experimental conductance Gexp�VG� and
phase shift ’�VG� as a function of VG (values taken from
Ref. [4]; cf. text). Comparison is made with the curve G�VG� �
sin2	’�VG�=2
.
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SLRkF� � SRLkF� � C�i sin��e
i�� and SLLkF� � SRRkF� � C��

cos��e
i�� . The multiplicative phase factor C� contains

additional information about the spectrum and the filling
of the quantum dot. To determine it, we make use of
Levinson’s theorem [14,15]. In its original form, the theo-
rem applies to the potential scattering of a particle in a
given momentum l and relates the zero-energy phase shift
�l to the number of bound states of the same l supported by
the potential. It was generalized [16,17] later on to the case
of the scattering of a particle by a neutral compound
system as constituted, for instance, by an atom. In the
present case of a QD, which can be viewed as an artificial
atom, it follows that ln detŜkF�=�2i�� is equal to the total
number of states, i.e.,

P
�n0� � n0. By applying general-

ized Levinson’s theorem to ŜkF�, one finds C� � ei��� and

Ŝ kF� � ei�
cos�� i sin��
i sin�� cos��

� �
; (4)

where � �
P
���. One can easily check that, ŜkF� being a

unitary matrix, the optical theorem is fulfilled: T̂kF�T̂
y
kF�
�

�2 ImT̂kF�, where T̂kF� � �i�Î � ŜkF��.
In an open Aharonov-Bohm interferometry experiment

[5], spin-� electrons coming from the source through each
of the two arms interfere coherently at the drain, leading to
periodic oscillations of the differential conductance, the
argument of which is given by 2��e=h� �QD. � is the
magnetic flux and �QD is the transmission phase shift
introduced by the QD, equal to � � �n0 [cf. Eq. (4)].
In this Letter, we neglect the role of the reference arm
on the phase shift considered by some authors [18] and
concentrate on the contribution of the quantum dot to
the interference pattern. The conductance through the
QD is expressed by the Landauer formula [19,20], G /P
�jT

LR
kF�
j2. Using Eq. (4), we get G /

P
�sin2��. In the

absence of magnetic field, �" � �# � �=2, one gets

G /
X
�

sin2�=2: (5)

Because of recent developments in experimental tech-
niques, one now disposes of simultaneous measurements
of G and �QD. In this Letter we check the validity of the
theoretical prediction of Eqs. (4) and (5) by reporting the
experimental results for G and �QD obtained in the unitary
limit at different values of VG. Before examining the
experimental test, we make the following remarks: (i) in
an interferometry experiment, only relative values of the
transmission phase shifts can be measured. Hence we
set � � � at the location of the maximum of the visibil-
ity, evaluated to VG � 423 mV. This implies a shift in the
� scale evaluated to �� � 0:29� with ’ � �� ��;
(ii) typically the measurement of the conductance G is
performed in a ‘‘one-arm’’ device (pinching off the refer-
ence arm with the barrier gate), whereas that of the visi-
12720
bility is done in a ‘‘two-arm’’ device. As a result, while the
evolution of the visibility with VG mimics that of the
conductance, the value of the former is shifted with respect
to that of the latter, by �VG � 15 mV. Therefore we take
the values of G at �VG ��VG�, and of � at VG; (iii) the
conductance is normalized by its maximum value at VG �
423 mV. Taking all these points into account, the graph
reported in Fig. 1 shows that the experimental dependence
of sin2’=2 with VG reproduces that of the ‘‘shifted’’ con-
ductance Gexp in a quite remarkable way, providing further
support to the validity of Eqs. (4) and (5) [21].

We now want to evaluate n0 in order to derive � � �n0.
Starting from Eq. (1), one can show [9] that only the
symmetric linear combination of electrons couples to the
localized state. Therefore if we are interested only in n0, it
is sufficient to study a single reservoir Anderson model

with a hybridization potential ~V �
������������������
V2
L � V

2
R

q
. We have

solved the equations of the Bethe ansatz (BA) numerically
at T � 0 [22–24]. This allows us to determine the value of
n0 as a function of the parameters of the Anderson model
"0, V, and U. The three parameters enter through their
ratios "0=U and �=U, where � � �V2�0. Denote by
n0�"0;�=U� the value of n0 for the corresponding values
of the parameters. The following relation holds due to the
particle-hole symmetry of the model [23]: n0�� �"0 �
U�;�=U� � 2� n0�"0;�=U�. This automatically ensures
n0��U=2;�=U� � 1 in the symmetric limit "0 � �U=2
whatever �=U is. Furthermore, it follows from the preced-
ing relation that the study can be restricted to �U=2 �
"0 � U=2 and the remaining part can be deduced from it.
The results of the calculations are reported in Fig. 2(a). For
strong coupling strengths �=U � 0:25, n0 is found to
climb almost linearly with ��"0=U� 1=2�, whereas for
weak coupling strengths �=U � 0:25, the energy depen-
dence of n0 develops a plateau around "0 � �U=2. This
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FIG. 3 (color online). Fit of the experimental data for the VG
dependence of the phase shift with the BA results for � � �n0

as a function of �"�0=�. Making use of the electron-hole sym-
metry, experimental results both below and above the symmet-
ric limit are reported using the same scales. They are repre-
sented by triangles pointing down and up, respectively, in the
unitary limit, and by circles and squares, respectively, in the
Kondo regime (incorporating a shift in the � scale; cf. text). The
best fit is obtained for �=U � 0:5 in the unitary limit (both
below and above the symmetric limit), and for �=U � 0:07 or
0.05 in the Kondo regime (below or above the symmetric limit,
respectively).

FIG. 2 (color online). (a) Theoretical results from the BA
calculations for the occupation number n0 as a function of the
normalized energy ��"0=U� 1=2� at different values of �=U.
Note that n0 � 1 at the symmetric limit "0 � �U=2 and the
existence of a plateau in its vicinity when �=U � 0:25. (b) The
same quantity as a function of the renormalized energy "�=� at
different values of �=U.
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change of behavior is due to the fact that the extent of the
local moment regime (centered around 	0 � �U=2 with
n0 ’ 1) increases when �=U decreases. As the temperature
is lowered, the Kondo resonance develops through this
local moment regime. This plateaulike structure can be
viewed as the beginnings of the ‘‘staircase’’ variation of
n0 with "0 obtained in the localized regime �=U ! 0.

The experimental data can be fitted then with two pa-
rameters, �=U and "0=U. The value of "0 is governed by
the strength of the gate voltage. Fitting the experimental
data from results presented in Fig. 2(a) is a difficult task
since one needs to fix the correspondence between "0=U
and VG on the one hand (we take it linear as usual,
independent of the regime considered), and to find the
best fitting value for �=U in the different regimes on the
other hand. A valuable help for doing this is provided by
taking advantage of some special properties of the
Anderson model. These properties can easily be recog-
nized when physical quantities such as n0 are plotted as a
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function of some renormalized energy defined as "�=� �
"0=�� g�U=��. In the asymmetric regime [24] when
�U� 2"0� �

�������
�U
p

and j"0j 
 U, g	U=�
 equals 1
� �

ln��eU=�4��� and the behavior of n0 as a function of
�"�0=� is universal [24,25]. This property is illustrated in
Fig. 2(b). The universality is reached when �=U � 0:25
and the range of energy over which universal behavior
extends is given by j"�0=�� 1=� ln��U=��j 
 U=�.
One can also see from Fig. 2(b) that in the empty level
regime (n0 ! 0), the curves n0 � f�"�0=�;�=U� at various
values of �=U merge, displaying an asymptotic behavior
[26]. The existence of both these universal and asymptotic
behaviors is of valuable help in fitting the experimental
data. Figure 3 reports the results of the fit in the unitary
limit and Kondo regimes. The experimental results incor-
porate a shift in the � scale, ’ � �� �� in order to get
’ � � at the symmetric limit. We establish the correspon-
dence between VG and "0=U by fitting the experimental
data to the theoretical results in the empty level regime
when all the curves merge. One finds �VG=��"0=U� of the
order of 30 mV in both of the regimes considered. The best
fit is obtained for �=U � 0:5 in the unitary limit both
below and above the symmetric limit, and for �=U �
0:04 or 0.07 in the Kondo regime (below or above the
symmetric limit, respectively). Finally, by keeping the
same correspondence between VG and "0=U and using
� � �n0, we derive the dependence of the phase shift
with VG from results obtained in Fig. 2(a). As can been
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FIG. 4 (color online). Phase shift as a function of the gate
voltage VG. (a) Unitary limit. Theoretical results from Bethe
ansatz calculations at �=U � 0:5 compared to the experimental
data for ’=� � �exp=�� 0:29 (triangles pointing down and
up). (b) Kondo regime. Same thing with �=U � 0:04 and 0.07,
’=� � �exp=�� 0:01 (circles and squares).
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seen from Fig. 4, our theoretical predictions are in quanti-
tative agreement with the experimental data. The fit is all
the more remarkable that it is performed in the presence of
a single fitting parameter �=U only.

In conclusion, we have proposed a theoretical analysis
of the transmission phase shift of a quantum dot in the
presence of Kondo correlations and confronted our results
with the Aharonov-Bohm interferometry and conductance
measurements. We have explained the presence of a factor
of 2 difference between the total phase of the S-matrix
(responsible for the shift in the AB oscillations), and the
one appearing in the expression of the conductance G�
sin2��=2�. Our calculations based on Bethe ansatz lead to a
remarkable quantitative agreement with experimental re-
sults. The whole discussion so far has been restricted to the
low temperature regime. One of the next goals will be to
include finite temperature effects as well as to study the
role of a magnetic field and consider the out-of-equilibrium
situation.
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[9] L. I. Glazman and M. É. Ra��kh, JETP Lett. 47, 452 (1988).

[10] T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 (1988).
[11] E. Merzbacher, Quantum Mechanics (Wiley, New York,

2000).
[12] A. C. Hewson, The Kondo Problem to Heavy Fermions

(Cambridge University Press, Cambridge, U.K., 1993).
[13] J. Friedel, Can. J. Phys. 34, 1190 (1956).
[14] N. Levinson, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 25,

9 (1949).
[15] L. I. Schiff, Quantum Mechanics (McGraw-Hill,

New York, 1968).
[16] L. Rosenberg and L. Spruch, Phys. Rev. A 54, 4978

(1996).
[17] L. Rosenberg and L. Spruch, Phys. Rev. A 54, 4985

(1996).
[18] J. Konig, W. Hofstetter, and H. Schoeller, Phys. Rev. Lett.

87, 156803 (2001).
[19] R. Landauer, Philos. Mag. 21, 863 (1970).
[20] N. S. Wingreen and Y. Meir, Phys. Rev. B 49, 11 040

(1994).
[21] Note that Eq. (5) is valid only when T 
 TK. Whereas the

condition is satisfied in the experiments performed in the
unitary limit, the relation does not hold for experiments
performed in the Kondo regime when weaker coupling
strength introduces a reduction of TK.

[22] N. Kawakami and A. Okiji, J. Phys. Soc. Jpn. 51, 2043
(1982).

[23] N. Kawakami and A. Okiji, J. Phys. Soc. Jpn. 51, 1145
(1982).

[24] A. M. Tsvelick and P. B. Wiegmann, Adv. Phys. 32, 453
(1983).

[25] F. D. M. Haldane, Phys. Rev. Lett. 40, 416 (1978).
[26] This can be proved by noticing that � is almost unrenor-

malized in the n0 ! 0 limit.


