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Nonuniversality of Anderson Localization in Short-Range Correlated Disorder
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We provide an analytic theory of Anderson localization on a lattice with a weak short-range correlated
disordered potential. Contrary to the general belief, we demonstrate that already next-neighbor statistical
correlations in the potential can give rise to strong anomalies in the localization length and the density of
states, and to the complete violation of single-parameter scaling. Such anomalies originate in additional
symmetries of the lattice model in the limit of weak disorder. The results of numerical simulations are in
full agreement with our theory, with no adjustable parameters.
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It is customary to assume that a wave completely loses
its phase memory when reflected from a weak disordered
potential [1–4]. Many powerful analytical frameworks,
such as the single-parameter scaling theory [5], the
Dorokhov-Mello-Pereyra-Kumar (DMPK) approach
[6,7], or the 1D nonlinear�-model [8] are based, implicitly
or explicitly, on the reflection phase randomization (RPR).
The RPR stands behind the notion of the standard univer-
sality classes in the random matrix description of non-
interacting disordered wires [9] and leads to the indepen-
dence of the mean density of states on disorder strength.

The violation of the RPR is responsible for many non-
universal effects. One example is the tight-binding model
with hopping disorder, where the density of states diverges
at the band center for an odd number of coupled chains
[10], while it vanishes for an even number [11]. The break-
ing of single-parameter scaling and RPR by hopping dis-
order and other deviations from universality were studied
recently in great detail [12,13].

A partial violation of the RPR can be induced by a
disordered on-site potential alone. This happens when the
potential can no longer be regarded as weak, e.g., at the
edges of electronic conduction (or photonic transmission)
bands [14,15], or in the situation when the probability
density of the potential has power law tails [16]. In the
case of a one-dimensional lattice with white-noise poten-
tial the RPR is partially violated at the band center, leading
to the Kappus-Wegner anomaly characterized by a 9%
increase of the localization length [17,18].

In this Letter we demonstrate that the RPR can be
broken far more dramatically if the disordered potential
is short-range correlated. (By ‘‘short range’’ we mean a
finite correlation radius that is much smaller than the
localization length.) The lack of RPR is accompanied by
anomalies in the localization length (which can sharply
increase or decrease) and in other quantities such as the
delay time or the density of states. In contrast to the general
belief [19,20], even next-neighbor statistical correlations in
the potential can lead to a severe violation of the single-
parameter scaling. In brief we distinguish two different
effects of the correlations: (i) the system retains its univer-
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sal properties with a renormalized localization length [21];
(ii) the universality is broken in the vicinity of specific
spectral points, the RPR and the single-parameter scaling
are violated, and the density of states shows an anomaly,
which depends on disorder strength.

We consider the one-dimensional Anderson model

��n�1 ��n�1 �Un�n � E�n (1)

with a weak disordered potential Un, hUni � 0, and
jUnj � 1. The correlation function hUnUmi � ��n;m� is
assumed to be invariant under a finite translational shift
��n�Q;m�Q� � ��n;m�. The minimal period Q does
not need be identical with the lattice constant. This accom-
modates the cases of structural and chemical disorder or
carefully engineered disorder, e.g., with masks. For Q � 1
the correlation function is generally written as

hUnUn0 i � �n�n0 ; �n � ��n: (2)

The localization length � is accessible via the dimen-
sionless conductance (transmission probability) gn of the
system of length n, ��1 � �limn!1�1=2n�hlngni. In order
to quantify deviations from universality we consider the
complete statistics of the conductance fluctuations ob-
tained from the generating function

���� � lim
n!1

1

n
lnhg��=2

n i �
X1
s�1

cs�s

s!
; � � 0: (3)

The localization length is given by � � c�1
1 . In single-

parameter scaling [5], c2 � c1, and cs � 0 for s � 3,
corresponding to a log-normal distribution of gn. In this
Letter we concentrate on the first two coefficients c1 and
c2. We base our analysis on the exact phase formalism
[22,23], which we extend to the case of correlated disorder.

For the sake of definiteness, assume the wave is reflected
from the right end of a system of length n� �, with
reflection amplitude rn �

��������������
1� gn
p

exp�i�n�. The reflec-
tion phase �n 2 �0; 2�� is related to the wave function by

�n

�n�1
�

1� ei�n

eik � e�ik�i�n
; E � �2 cosk; (4)
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while the conductance gn is obtained from

�n 	 �1
2 lngn � 1

2 lnj�2
n ��2

n�1 � E�n�n�1j: (5)

Up to the second order in disorder strength, the statistical
evolution of the phase and conductance with increasing
system size is described by the recursion relations

�n�1 � �n � 2k� 2Kn��n�; (6a)

�n�1 � �n � K0n��n� � �K0n��n��2; (6b)

where the prime stands for the derivative with respect to �n
and the function Kn��� is given by

Kn��� �
�n���

1��0n���
; �n��� �

Un

v
�1� cos��; (7)

with the group velocity v � j@E=@kj.
There exist two major obstacles in the derivation of the

Fokker-Planck equation for the joint probability density
Pn��; �� from Eqs. (6a) and (6b). First, the wave number k
on the right-hand side of Eq. (6a) is not small. Second, the
values of Kn are correlated at different sites. These diffi-
culties can be circumvented by monitoring the variables �n
and �n with a step of q sites [24]. We parametrize the
energy E � �2 cos�p=q� " with small "� 1 and inte-
ger p, and choose q to be much larger than the correlation
radius of the potential. Thus, the change of the phase over q
sites �� � �n�q � �n is small,

��n �
2"q
v
� 2

Xq�1

s�0

�n�s��� 2ks� � 2
Xq�1

s�0

Xq�1

m�s

2

1� �ms


�n�s��� 2ks��0n�m��� 2km�; (8)

to the second order in the potential. Similarly, the incre-
ment �� � �n�q � �n is given by

��n �
Xq�1

s�0

�0n�s��� 2ks� �
Xq�1

s�0

Xq�1

m�s

2

1� �ms


�n�s��� 2ks��00n�m��� 2km�: (9)

In the limit of weak disorder, the recurrent relations
Eqs. (8) and (9) lead to the Fokker-Planck equation for
the joint probability density Pn��; ��

@Pn
@n
� �

@
@�

F���Pn �
1

2

@2

@�2 D���Pn �
@
@�

F1���Pn

�
1

2

@2

@�2 D1���Pn �
@
@�

@
@�

D01���Pn: (10)

The drift and diffusion coefficients, which determine the
phase distribution Pn���, are

F����
1

q
h��ni; D����

1

q

X1
m��1

h��n��n�mqi: (11)

In the case of the correlated disorder (2) with Q � 1, these
coefficients are related by F � 2"=v� �1=4�@D=@�. The
other coefficients in Eq. (10) are given by
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F1��� �
1

q
h��ni; D1��� �

1

q

X1
m��1

h��n��n�mqi;

D01��� �
1

q

X1
m��1

h��n��n�mqi: (12)

Thus, we have derived Fokker-Planck equations (10),
which describe the system in the vicinity of a given rational
energy E � �2 cos�p=q with q � 2. The potential fluc-
tuations are assumed to be restricted within the conduction
band, so that jE�Unj< 2. In particular, Eq. (10) does not
apply in the vicinity of the band edge, where any fluctua-
tion is strong. The latter case has to be treated separately.
The effect of dichotomic correlated disorder near the band
edge was studied in Ref. [25].

The equation for the phase distribution function Pn��� is
readily obtained by integrating Eq. (10) over the variable �.
There exists, however, no general way to derive a similar
equation for the distribution Pn���. The calculation of the
generating function ���� hence requires the analysis of the
full density Pn��; ��. Such analysis is greatly simplified
for RPR, which implies the factorization Pn��; �� �
�2���1Pn���. In this case a closed equation for Pn���
can be derived by averaging Eq. (10) over the phase

@Pn���
@n

�
1

�	

@Pn���
@�

�
1

2�	

@2Pn���

@�2 ; (13a)

1

�	
�
Z 2�

0

d�
2�

F1��� �
Z 2�

0

d�
2�

D1���; (13b)

where �	 is the localization length in the presence of RPR.
The last equality in Eq. (13b) directly follows from
Eq. (6b), which implies that the first and second moments
of the increment of � are equal if the phase is randomized.
The generating function (3) calculated from Eq. (13b) has
the parabolic shape �������1��=2�=�	. Hence, RPR
implies single-parameter scaling in the localized regime,
even in the presence of correlated disorder. [This statement
holds also for hopping disorder, which modifies the ex-
pression for Kn, while Eqs. (6a) and (6b) retain their form.]

It is instructive to calculate �	 for correlations of the
type (2). Taking the integrals in Eq. (13b), we reproduce
the result of Ref. [21]

1

�	
�

1

2v2

X1
s��1

�se
2iks: (14)

It is important to remember, however, that �	 � � only if
RPR holds. This brings us to the question: What are the
conditions for RPR, and what are the implications for the
localized wave functions when RPR does not occur?

As a first example to illustrate the effect of short-range
correlations on the reflection phase statistics, we consider
disorder of the type (2) with next-neighbor correlations
only, �s�3 � 0. We let q � 2p, q� 1 and obtain from
Eq. (11)

D��� � 2�0 � ��0 � 2�1�sin2�: (15)
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FIG. 1 (color online). A lack of phase randomization leads to a
distinctive band center anomaly in the conductance gn through a
disordered wire (1) of length n � 12 000 with next-neighbor cor-
relations (17) of the potential and � � 1=150 (RPR localization
length �	�2=��300). The main panel shows the mean loga-
rithm c1 � ��1=2n�hlngni and its variance c2 � �1=4n� var lngn
from numerical simulations (data points) and the analytical
expressions (21) and (24a) (solid lines), scaled to ��1

	 . The inset
shows the distribution of the reflection phase P��� at the band
center, calculated numerically as well as analytically (18).
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The Fokker-Planck equation for the stationary phase dis-
tribution P��� is simplified to

�"
@
@�

P�
1

2

@
@�

����
D
p @

@�

����
D
p

P � 0: (16)

Its solution at the band center " � E � 0 is given by P /
�D���
�1=2. Note that the solution slightly deviates from
the constant even for the white-noise potential (�1 � 0),
which is the source of the so-called Kappus-Wegner anom-
aly [14,17,18]. The next-neighbor statistical correlations
can induce far stronger deviations from RPR. Indeed, for
� � �1 � ��0=2,

hUnUn0 i � 2��nn0 � ��nn0�1; (17)

the solution to Eq. (16) is singular at " � 0, because the
function D��� develops a zero for � � ��=2.

At the level of Eq. (16) the situation is analogous to the
band center Dyson singularity [10] in the presence of
hopping disorder. Hence, the correlations turned a weak
anomaly into a strong anomaly. While the usual Dyson
singularity appears as a consequence of an exact ‘‘chiral’’
symmetry of the wire, such symmetry is limited to the first
two orders in disorder strength for the correlated disorder
(17). Using the decomposition Un � un � un�1 with
hunun0 i � ��nn0 , and taking also the fourth-order terms
hu4
ni � 
2 in the potential into account, we derive at the

band center the regularized phase distribution

PE�0��� / �cos2�� �
2 � �2�=4�
�1=2; (18)

which becomes more singular for lower disorder strength.
The probability density PE�0��� acquires a nonuni-
versal dependence on the shape of the distribution func-
tion of the potential via the relation between its fourth
and second moments. Slightly away from the band center,

"�
�������������������������
��
2 � �2�

p
, the fourth-order terms play no role and

the phase distribution is described by the solution of
Eq. (16) with D � 4�cos2�,

P��� /
Z 1

0
dy

e�"y=2�������������������������������������������������
y2cos2�� y sin2�� 1

p : (19)

The lack of RPR is necessarily reflected in an anomaly
of the density of states, due to the node-counting theorem
[26,27]; this also implies a different statistics of time
delays � � @�=@E, for which the increments are obtained
by differentiating Eq. (8) with respect to ".

We now explore the implications for the transmission
properties of the system. For the specific correlations (17),
the Fokker-Planck equation (10) simplifies near E � 0 by

@Pn
@n
� �"

@Pn
@�
� 2�

�
@
@�

cos��
1

2
sin�

@
@�

�
2
Pn: (20)

The coefficient c1 is obtained directly by averaging the
expression (9) with the stationary phase distribution (19).
The result is
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c1 � �
Z 2�

0
d�P���cos2� � �

"
2

Im
K1�i"=2��
K0�i"=2��

; (21)

where K��x� is the modified Bessel function. The singu-
larity in Eq. (21) in the limit "! 0 is again regularized in
the fourth order of the potential. In the weak disorder limit

we find at the band center �=�	 � ln8
����������������������������
�=�
2 � �2�

p
.

From Eq. (20) we can determine all coefficients cs
recursively [13,14,16]. A double Laplace transform

~P���;�� �
X
n

Z 1
�1

d�e�������nPn��; �� (22)

reduces Eq. (20) to the eigenvalue problem

�"
@ ~P�
@�
� 2�

�
@
@�

cos��
�
2

sin�
�

2
~P� � ���� ~P�:

(23)

The generating function ���� can be obtained perturba-
tively in �, taking the solution P��� of Eq. (19) as zero
approximation. In particular, the variance c2 is given by

c2 � �� c1 �
Z 2�

0
d��c1 � �cos2��G���; (24a)

G��� � L�1
�

�
c1 � �cos2�� �

@
@�

sin2�
�
P���; (24b)

L� � �
"

2�
@
@�
�

@
@�

cos�
@
@�

cos�: (24c)

In order to illustrate our predictions, we compare them
in Fig. 1 to the results of numerical simulations. The
numerical results agree with the theory, without any ad-
justable parameter. The main panel shows the energy de-
pendence of c1 and c2 near the band center [Eqs. (21) and
2-3
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(24a)], which clearly deviates from the single-parameter
scaling prediction c1 � c2 � ��1

	 . The inset shows the
phase distribution (18) at the band center.

In general, RPR is completely violated if the diffusion
coefficient D��� has zeros as the function of �. The
reflected wave then mantains a strict phase relation with
the incoming wave. For the correlated disorder of the type
(2) such relation (phase selection) can occur only at the
band center. The restriction is lifted for correlations with
Q � 1. In Fig. 2 we provide examples of a quarter band
anomaly, caused by disorder correlations with Q � 3.
Following this recipe, strong anomalies can be produced
in a vicinity of arbitrary rational values of the wave length
2q=p by a suitably correlated weak disorder potential with
Q � q. This is in striking contrast to the case of white-
noise disorder, which produces only a weak anomaly, and
only at a single spectral point (the band center).

In conclusion, we show that the 1D Anderson model
with a weak short-range correlated potential may demon-
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FIG. 2 (color online). The mean logarithm of the conductance
and its variance are calculated numerically for the system (1) of
the large length n. The coefficients c1 � ��1=2n�hlngni and
c2 � �1=4n� var lngn are plotted as the function of energy near
the quarter band E � 1. The disorder is generated by Un �
2un � un�1 � un�1 (top panel) and Un � 2un�1 � un � un�1

(bottom panel), where the random numbers un � 0 unless n is
a multiple of 3 and hu3mu3m0 i � ��mm0 , � � 1=150. The insets
show the distribution function of the reflection phase. The solid
lines are obtained from the solution of Eq. (10) with p � �1,
q � 3. The RPR localization length �	 is obtained from
Eq. (13b).
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strate strong anomalies near specific spectral points. Such
anomalies can be used to strongly modify the transmission
properties of electronic wires and photonic wave guides in
very small energy windows provided the phase coherence
is preserved over a long distance. In these windows the
reflected wave develops a preferred phase relation with the
incoming wave. These properties indicate that disorder
correlations may be favorably employed in the design of
photonic or electronic filters.
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