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New Type of Magnetorotational Instability in Cylindrical Taylor-Couette Flow
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We study the stability of cylindrical Taylor-Couette flow in the presence of combined axial and
azimuthal magnetic fields, and show that adding an azimuthal field profoundly alters the previous results
for purely axial fields. For small magnetic Prandtl numbers Pm, the critical Reynolds number Rec for the
onset of the magnetorotational instability becomes independent of Pm, whereas for purely axial fields it
scales as Pm�1. For typical liquid metals, Rec is then reduced by several orders of magnitude, enough that
this new design should succeed in realizing this instability in the laboratory.
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The magnetorotational instability (MRI) is one of the
most important processes in astrophysics, with applica-
tions ranging from accretion disks to entire galaxies
[1,2]. There is therefore great interest in trying to study
this instability in the laboratory [3–10]. These experiments
are complicated by the extremely small magnetic Prandtl
numbers of liquid metals, which necessitate very large
rotation rates. Here we report on a new type of magneto-
rotational instability, that operates even at infinitesimal
Prandtl number, and correspondingly at far lower rotation
rates. This new instability should be much easier to obtain
experimentally, and may also have considerable astrophys-
ical implications.

The magnetorotational instability is a mechanism for
transporting angular momentum. Consider, for example,
an accretion disk around a newly forming star. In order for
material to fall inward, it must transfer its angular momen-
tum to material further out. The difficulty is how to accom-
plish this. In particular, a Keplerian angular velocity
profile, for which �� r�3=2, is known to be hydrodynami-
cally stable (at least linearly), by the familiar Rayleigh
criterion. Purely viscous coupling in a laminar flow is
many orders of magnitude too small though; if this were
the angular momentum transport mechanism, stars would
take so long to form that none would yet exist today, some
14� 109 years after the big bang.

This conundrum was solved by Balbus and Hawley [1],
who showed that such a Keplerian profile may be hydro-
dynamically stable, but is nevertheless magnetohydrody-
namically unstable. The addition of a magnetic field opens
up a new way of coupling fluid parcels, namely, via the
magnetic tension in the field lines, and thereby allows for a
new instability, the magnetorotational instability, that has
no analog in the purely hydrodynamic problem. Coupling
the fluid in this way is then so much more efficient at
transporting angular momentum that this mechanism can
indeed yield accretion rates more in line with those ob-
served. Something as basic as the time it takes for a star to
form is thus magnetically controlled.
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Subsequent to this work, it was soon realized that this
instability had actually been discovered decades earlier, by
Velikhov [11], who had, though, not considered it in an
astrophysical context. Instead, he had viewed it simply as
the magnetohydrodynamic extension of the so-called
Taylor-Couette problem, consisting of the flow between
differentially rotating cylinders. See, for example, [12] for
a review of this problem, one of the oldest in fluid
dynamics.

Once the connection is made to the classical Taylor-
Couette problem, one immediately recognizes that this
should be a way to study this instability in the lab: just
take the fluid to be a liquid metal, and apply a magnetic
field along the cylinders. This simple design is the basis of
most of the MRI experiments proposed to date [3–8].
(Sisan et al. [9] claim to have obtained the magneto-
rotational instability already, in spherical rather than cy-
lindrical geometry. However, there are enough other
instabilities that can arise in this configuration, e.g., [13],
that their results are also open to other interpretations.
Indeed, the basic state from which their instability arises
is already fully turbulent, indicating that whatever their
instability may be, it is certainly not the first instability to
set in.)

As simple as it sounds, there is unfortunately also one
considerable difficulty associated with these experiments,
namely, that the rotation rates of the inner and outer
cylinders must be enormous. The problem is that the
relevant parameter is not so much the hydrodynamic
Reynolds number Re � �ir

2
i =�, but rather the magnetic

Reynolds number Rm � �ir
2
i =�, where � is the viscosity

and � the magnetic diffusivity. In its traditional form, the
magnetorotational instability sets in when Rm � O�10�.
Re is then given by Rm=Pm, where Pm � �=� is the
magnetic Prandtl number, a material property of the fluid.
Typical values are �10�5 for liquid sodium, �10�6 for
gallium, and �10�7 for mercury. Re must therefore be at
least 106, and possibly larger still, depending on the par-
ticular liquid metal one intends to use.
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FIG. 1. The critical Reynolds number Rec as a function of �̂.
The dotted curve to the left of �̂ � 0:25 is a purely nonmagnetic
instability (Ha � 0, so b and a drop out entirely). The curves to
the right of �̂ � 0:25 are the magnetorotational instability. Solid
curves are Pm � 10�6, dashed curves Pm � 10�5. The numbers
beside pairs of curves indicate �. Finally, the dot on the � � 4
curves corresponds to the solution shown in Fig. 2.
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Such large values can be reached in the lab; taking the
inner cylinder radius ri � 10 cm, say, one finds that rota-
tion rates of around 10 Hz are required—large, but achiev-
able. The difficulty lies elsewhere, namely, in the ends that
would necessarily be present in any real experiment.
Because of the Taylor-Proudman theorem, stating that in
rapidly rotating systems the flow will tend to align itself
along the axis of rotation, end effects become increasingly
important, until at Re � O�106� the flow is controlled al-
most entirely by the end plates [14]. That is, while it is
possible to achieve such large rotation rates, the flow will
look nothing like the idealized infinite-cylinder flow on
which all of the theoretical analysis is based.

A new approach is therefore needed if this instability is
to be studied in the laboratory. We propose the following:
instead of imposing only a uniform axial field Bz � B0,
additionally impose an azimuthal field B� � �B0�ri=r�,
where � is a nondimensional measure of the relative
magnitudes of B� and Bz, and the dimensional quantity
B0 will be incorporated into the Hartmann number below.
Such a B� field can be generated just as easily as a Bz field,
by running a current-carrying wire down the axis of the
inner cylinder (suitably insulated from the fluid, of course).
Note also that with neither Bz nor B� maintained by
currents within the fluid itself, the possibility of magnetic
instabilities is excluded a priori. The only source of energy
to drive an instability is the imposed differential rotation;
the magnetic field merely acts as a catalyst.

Given this basic state consisting of these externally
imposed magnetic fields, as well as the differential rotation
profile ��r� imposed by the rotation rates �i and �o of the
two cylinders, we linearize the governing equations about
it, and look for axisymmetric disturbances. These are
known to be preferred over nonaxisymmetric ones for the
classical � � 0 MRI, and are therefore the appropriate
starting point here as well. The perturbation flow and field
may then be expressed as

u � vê� �r� � ê��; b � bê� �r� �aê��:

Taking the z and t dependence to be exp�ikz� �t�, the
perturbation equations become

Re�v � D2v� Reikr�1�r2��0 � Ha2ikb;

Re�D2 � D4 � Re2ik�v� Ha2ik�D2a� 2�r�2b�;

Pm Re�b � D2b� Pm Reik�0ra� ikv� 2ik�r�2 ;

Pm Re�a � D2a� ik ;

where D2 � r2 � 1=r2, and the primes denote d=dr.
Length has been scaled by ri, time by ��1

i , � by �i, u
by �=ri, and B0 and b by B0. The various nondimensional
parameters are then: (a) the magnetic Prandtl number
Pm � �=� already mentioned above, (b) the ratio �̂ �
�o=�i [this enters into the details of ��r� � c1 � c2=r2]
and the Reynolds number Re � �ir

2
i =�, measuring the

relative and absolute rotation rates of the two cylinders,
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(c) the parameter � and the Hartmann number Ha �
B0ri=

��������������

����
p

[� is the fluid’s density, � the magnetic
permeability], measuring the relative and absolute magni-
tudes of the imposed magnetic fields, and (d) the radius
ratio ri=ro, which we fixed at 1=2.

The radial structure of v,  , b, and a was expanded in
terms of Chebyshev polynomials, typically up to N �
40–80. These equations and associated boundary condi-
tions (no slip for u, insulating for b) then reduce to a large
(4N � 4N) matrix eigenvalue problem, with the eigen-
value being the growth or decay rate � of the given
mode. Note also that this numerical implementation is
very different from that of [4], in which the individual
components of u and b were used, and discretized in r
by finite differencing. Both codes yielded identical results
though in every instance where we benchmarked one
against the other.

The following sequence of calculations was then carried
out. First, we fixed Pm, �, and �̂, and scanned through a
range of values of Re, Ha, and k, in each case determining
whether the given modes grow or decay. We thus found the
smallest value of Re, and the corresponding Ha and k, that
yields a marginally stable solution, one having Re��� � 0
(which typically involved solving the basic eigenvalue
problem for several thousand combinations of Re, Ha,
and k). By repeating this entire procedure for different
values of Pm, �, and �̂, we obtained the results in Fig. 1.

The dotted curve to the left of �̂ � 0:25 is a purely
hydrodynamic instability, namely, the onset of Taylor vor-
tices, e.g., [12]. As we approach �̂ � 0:25 though, we note
that Rec ! 1. This critical value �̂ � 0:25 [�ri=ro�2, in
general] is precisely the so-called Rayleigh line, beyond
which the flow is hydrodynamically stable, because the
angular momentum increases outward.
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FIG. 2. The spatial structure of the eigenmode for Pm � 0,
� � 4, and �̂ � 0:27, for which Rec � 1521 (see Fig. 1), Ha �
16:3 and k � 2:33. From left to right, contours of v,  , b, and a,
with the contour interval for b and a 1=3 that of v and  . Note
the absence of any special phase relationship between the
various quantities, due to the �z symmetry breaking.
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We are more interested therefore in the behavior to the
right of �̂ � 0:25, where we anticipate that the inclusion of
magnetic effects will yield the MRI. We begin with the two
curves � � 0, the MRI as it has been considered to date
[10]. We see how Rec rises very steeply from the previous
nonmagnetic results to the left of �̂ � 0:25, and then
scales as Pm�1, exactly as described above, and in perfect
agreement with [4]. And again, because Pm is so small,
these values end up being too large for the experiment to
succeed [14].

However, turning next to the results for nonzero �, we
see that Rec is dramatically reduced, over a range of �̂
extending increasingly far beyond the Rayleigh line. For
example, if we focus on how far �̂ can be increased before
Rec � 104, say, we obtain �̂ � 0:253, 0.264, 0.292, and
0.308 for � � 1, 2, 4, and 8, respectively. Furthermore,
within these �̂ ranges Rec is independent of Pm, very
different from the previous Pm�1 scaling. Indeed, for non-
zero �, and up to these values for �̂, one can set Pm � 0
and still obtain exactly the same solutions. This Pm � 0
limit was considered before by Chandrasekhar [15], but for
axial fields only, in which case there are no instabilities to
the right of the Rayleigh line.

The explanation for this very different behavior for
nonzero � lies in the coupling between the azimuthal field
b and the meridional circulation  . If � � 0 these quanti-
ties are not directly coupled at all, only indirectly through v
and a. For nonzero � each acts directly on the other. Of
these two new terms in the equations, the more important
one turns out to be the effect of  on b. Physically, this
corresponds to the meridional circulation  advecting
the original B� and thereby generating a contribution to
b. It is this new way of maintaining b that allows this
instability to proceed even in the Pm � 0 limit, where the
classical � � 0 MRI fails.

Figure 2 shows an example of these new solutions. We
note that however dramatically Rec may have been re-
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duced, the spatial structure is much the same as for
� � 0, consisting of Taylor vortices elongated slightly in
the z direction. There is actually one subtle difference,
namely, that the up or down symmetry in z has been
broken. This is due to the handedness of the imposed field,
which distinguishes between �z in a way that a purely
axial field does not. As a result of this symmetry breaking,
these new modes are also no longer stationary, but instead
have Im��� � 0, corresponding to a drift in z, at the rate
Im���=k. This particular solution has Im��� � 0:153 and
k � 2:33, for a drift rate of 0:066�ri�i�.

Turning next to the Hartmann number Ha � 16:3, this
translates into a �12 G field, taking the fluid to be liquid
sodium, and ri � 10 cm. An axial field of that magnitude
is certainly easily achievable in the lab. For the azimuthal
field we then want 500 G cm=r, corresponding to a current
of 2500 A in this wire running down the central axis, which
is again achievable, if perhaps not quite so easily.

To summarize then, we have shown that the magneto-
rotational instability is radically altered if one imposes
both axial and azimuthal magnetic fields, becoming inde-
pendent of the magnetic Prandtl number in the Pm! 0
limit—a result that is all the more remarkable as neither
purely axial nor purely azimuthal fields yield anything like
it. With this new scaling, the critical Reynolds numbers are
reduced by several orders of magnitude, enough that these
instabilities could perhaps be attainable in the lab without
being disrupted by end effects (although of course some
end effects will always be present, particularly with this
slow drift in z). Further computational work includes the
nonlinear equilibration of these modes, as well as the
possibility of nonaxisymmetric instabilities. These and
other issues are currently being explored.

Finally, returning briefly to the original astrophysical
motivation, we note that virtually all astrophysical bodies
do in fact have both axial and azimuthal magnetic fields.
These magnetic fields are typically not externally imposed
though, but rather generated by electric currents flowing
within the system itself. Self-consistently solving for both
the large-scale fields as well as the small-scale instabilities
is then far more complicated than our analysis here, but the
basic ingredients are certainly there for this new type of
magnetorotational instability to play a role.

This work was developed during the ‘‘Magnetohydro-
dynamics of Stellar Interiors’’ program at the Isaac Newton
Institute for Mathematical Sciences. We thank the Newton
Institute and the program organizers for inviting us both.
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[4] G. Rüdiger, M. Schultz, and D. Shalybkov, Phys. Rev. E

67, 046312 (2003).



PRL 95, 124501 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
16 SEPTEMBER 2005
[5] H. T. Ji, J. Goodman, and A. Kageyama, Mon. Not. R.
Astron. Soc. 325, L1 (2001).

[6] A. Kageyama, H. T. Ji, J. Goodman, F. Chen, and
E. Shoshan, J. Phys. Soc. Jpn. 73, 2424 (2004).

[7] A. P. Willis and C. F. Barenghi, Astron. Astrophys. 388,
688 (2002).

[8] K. Noguchi, V. I. Pariev, S. A. Colgate, H. F. Beckley, and
J. Nordhaus, Astrophys. J. 575, 1151 (2002).

[9] D. R. Sisan, N. Mujica, W. A. Tillotson, Y. M. Huang,
W. Dorland, A. B. Hassam, T. M. Antonsen, and
D. P. Lathrop, Phys. Rev. Lett. 93, 114502 (2004).
12450
[10] MHD Couette Flows: Experiments and Models, edited by
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