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Influence of Surface Roughness on Adhesion between Elastic Bodies
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We study the influence of surface roughness on the adhesion between elastic solids. We present
experimental data for the force necessary to pull off rubber balls from hard rough substrates. We show that
the effective adhesion (or the pull-off force) can be calculated accurately from the surface roughness
power spectra obtained from the measured surface height profile.
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Adhesion between solid surfaces is a common phe-
nomena in nature and is of extreme importance in biology
and technology. Biological ‘‘applications’’ include cell
adhesion [1–4] and the adhesive systems (for the purpose
of locomotion) in insects, lizards, and some frogs [5–7].
Technological applications include pressure sensitive ad-
hesives for envelopes and Post-it pads [8,9], as well as
many high-tech applications, e.g., silicon wafer bonding
[10]. However, the biggest ‘‘mystery’’ is not why adhesion
is sometimes observed but rather why it is usually not
observed [11,12]. For instance, a surface roughness of
just a few nanometers is enough to remove the adhesion
between clean and (elastically) hard solid surfaces [13].

Strong adhesion between two elastic solids will usually
occur only if at least one of the solids is elastically soft and
if both surfaces are smooth since the area of (atomic) con-
tact between two hard solids with rough surfaces is usually
only an extremely small fraction of the nominal contact
area [14,15]. In addition, the solids will be elastically de-
formed near the contacts, and the stored elastic energy is
‘‘given back’’ during pull-off, thus helping to break the ad-
hesive bond between the solids [16]. In fact, in many cases
the stored elastic energy is just large enough to break the
adhesive bond resulting in a vanishing pull-off force [16].

Commercial adhesives, such as pressure sensitive adhe-
sives used for Scotch tape or Post-it pads, consist of very
soft (weakly cross-linked) rubber compounds (low-
frequency elastic modulus in the 103–105 Pa range), which
can deform and make (almost) perfect contact even with
rather rough surfaces and low squeezing pressures [17]. In
addition, because rubber tack compounds usually have a
nearly liquidlike long-time response, very little elastic
energy will be stored at the rubber-substrate interface,
resulting in a strong effective adhesion between the rubber
and the substrate. On the other hand, the adhesive surface
layer on the lizards’ pads (and on attachment surfaces of
flies, bugs, and crickets) is made from a rather stiff material
(keratinlike proteins, with an elastic modulus of order
109 Pa) [5]. But in this case millions of years of optimiza-
tion (via the principle of natural selection) has resulted in a
highly structured�100 �m thick layer on the pad surface,
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which is built in a hierarchical manner from fibers and
platelike structures. This layer is elastically soft on all
length scales from millimeter to nanometer, which allows
the lizard to adhere and move on very rough (vertical)
surfaces, such as freshly cleaved stone surfaces [6,7].

The breaking of the atomic bonds between two elastic
solids during ‘‘pull-off’’ usually occurs by propagating an
interfacial crack. For purely elastic solids, the elastic en-
ergy stored at the interface because of surface roughness
will flow to the crack tip and facilitate the interfacial bond-
breaking process, resulting in the small adhesion observed
in most situations. However, for some materials, in par-
ticular, for rubberlike materials, a large (bulk) viscoelastic
energy dissipation may occur close to the crack tip. As a
result, strong effective adhesion (i.e., a large pull-off force)
may be observed in situations where a purely elastic solid
(with the same elastic modulus as the low-frequency elastic
modulus of the viscoelastic solid) would exhibit negligible
adhesion [18–20].

The standard and most well-defined method to study the
adhesion between two solids is a ball-on-a-flat configura-
tion. If at least one of the solids is elastically soft, the
Johnson-Kendall-Robbets (JKR) theory can be used to
analyze the experimental data. This theory predicts how
the radius of the circular contact area depends on the
(squeeze or pull) force F. The most important result is
the pull-off force given by [21]

Fpull-off �
3�
2
R��; (1)

where R is the radius of the ball and �� is the interfacial
binding energy per unit surface area when two flat surfaces
are brought into contact. Note that (1) does not depend on
the elastic modulus of the solids.

Equation (1) is also valid for rough surfaces, assuming
that the surface roughness power spectra has a roll-off
wavelength �0 (see below), which is much smaller than
the radius r0 of the contact area between the ball and the
substrate. However, in this case one must replace �� with
the effective interfacial energy �eff , which depends on the
nature of the surface roughness and on the elastic modulus
1-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.124301


7

6

5

1

FIG. 1 (color online). The surface height profile (50	 50 �m
square) of surfaces 1, 5, 6, and 7, measured using the atomic
force microscope.
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of the solids. For purely elastic solids one has A0�eff �
A���Uel. Here A0 is the nominal contact area, A is the
area of real (atomic) contact, and Uel is the elastic energy
stored at the interface as a result of the surface roughness,
i.e., Uel is the energy necessary to deform the rubber
surface so that it makes atomic contact with the substrate
over the area A.

In this Letter we present the first detailed study of
adhesion, where the full surface roughness power spectra
C�q� is included in the analysis of the experimental data.
We study the contact between rubber balls with smooth
surfaces and differently prepared substrate surfaces. The
substrates are elastically much harder than the rubber and
can be considered as rigid. The surface morphology of the
substrates are fully characterized by the surface height h�x�
measured using atomic force microscopy, from which the
power spectra’s C�q� have been obtained using the fast
Fourier transform [12].

In a classic paper Fuller and Tabor [13] have studied the
influence of surface roughness on the adhesion of rubber
balls to hard substrates. In order to understand the experi-
mental data, they developed a very simple model based on
the assumption of roughness on a single length scale. The
surface asperities were approximated by spherical cups
with equal radius of curvature, and the JKR theory was
applied to each asperity contact region. This assumes that
the area of real contact is much smaller than the nominal
contact area, and also that the contact regions are indepen-
dent of each other. Neither of these approximations is valid
unless the surface roughness is so high that the effective
adhesion nearly vanishes. In the present study we consider
the opposite limit of complete, or nearly complete, contact
where an essentially exact analysis is possible.

The substrate surfaces were prepared by vacuum evapo-
ration of aluminum on a silicon wafer at different substrate
temperatures. From the rough wafer surfaces we prepared
(negative) replicas using polyvinylsiloxane. Samples for
the measuring of adhesion were prepared from the poly-
vinylsiloxane templates using epoxy resin. We prepared 7
different surfaces that we denote by the numbers 1–7
according to increasing root-mean-square roughness.
Figure 1 shows the surface topography of four of the
used substrates.

The rubber lenses were prepared from polydimethylsi-
loxane (PDMS) silicon elastomer, which has a very low
glass transition temperature, and which therefore can be
considered as a nearly perfect elastic material with respect
to our applications. Hemispherical cups made of glass were
filled with the polymer and polymerized during 48 h at
60 �C. After polymerization, lenses were separated from
the cups and the surfaces were studied for perfection with a
microscope. Radii of the lenses were measured by using
white light interferometer. Here we report on experiments
performed at two different pull-off velocities (0.2 and
2 �m=s), for a polymer lens with radii 4.244 mm.

The pull-off force measurements were performed using
a steel spring with stiffness 334:9 N=m. The PDMS lens
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was glued on the steel spring and mounted on a piezo-
electric actuator, and the deflection of the spring was
measured using a laser interferometer. The measurements
were performed on a vibration isolated table. From the
measured pull-off forces we calculated the effective inter-
facial binding energies (per unit surface area) �eff using
Eq. (1).

Recently, one of us has developed a new contact me-
chanics and adhesion theory [14,16,22]. In this theory the
surface roughness height profile h�x� enters only via the
surface roughness power spectra [12]

C�q� �
1

�2��2
Z
d2xhh�x�h�0�ieiq�x: (2)

Here h� � �i stands for ensemble average, and we have
assumed that the statistical properties of the surface are
translational invariant and isotropic so that C�q� depends
only on the magnitude q � jqj of the wave vector q.
Figure 2 shows the surface roughness power spectra of
four of the surfaces used in the present study. The curve 1 is
for the smoothest surface used in our study, with the rms
roughness h0 � 0:03 �m. The surfaces shown in Fig. 1 are
not self-affine fractal on any length scale [23], but this fact
is not important for what follows.

The roughest surface we consider in this study has a
root-mean-square roughness of about h0 � 0:2 �m and a
roll-off wave vector q0 � 106 m�1 corresponding to the
wavelength �0 � 2�=q0 � 10�5 m. Now, let us discuss
whether the rubber-substrate adhesional interaction is
1-2
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strong enough to ‘‘pull’’ the rubber into complete contact
within a ‘‘cavity’’ of width �0 and height h0 
 �0. The
gain in rubber-substrate binding energy is of the order of
Uad � �2

0��, where �� is rubber-substrate interfacial
binding energy per unit surface area for flat surfaces.
However, since the adhesive interaction between the sur-
faces is very short ranged, the rubber must deform elasti-
cally and ‘‘bend’’ into the cavity to make atomic contact
with the substrate surface. Since the strain in the rubber is
of the order of �h0=�0 in a volume element of order ��3

0
we get the elastic energy to be of the order of Uel �
E�h0=�0�

2�3
0 � Eh2

0�0. Thus the condition Uel � Uad

gives h0 � ����0=E�1=2. With �� � 0:1 J=m2, �0 �
10�5 m, and E � 5 MPa we get h0 � 1 �m, which is
larger than the observed roughness amplitude even for
the roughest surface. However, the actual situation is
more complex than indicated by the calculation above
since the interfacial binding energy to be used in the
estimate above is not �� deduced for perfectly smooth
surfaces, but rather a smaller effective interfacial energy
that takes into account the substrate roughness on length
scales shorter than the roll-off wavelength �0.

Let us now consider the contact between an elastically
soft material, e.g., rubber, with a flat smooth surface and a
randomly rough hard substrate surface. Let us first assume
that perfect contact occurs at the interface between the two
solids. In Refs. [16,22] it has been shown that for this case
the change in the free energy per unit surface area upon
contact, which we denote as the effective surface energy
�eff , is given by [16,22]

�eff �
A
A0

���
Uel

A0
; (3)

where the increase of the surface area

A
A0
�
Z 1

0
dx�1� x�2�1=2e�x; (4)

where
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FIG. 2 (color online). The surface roughness power spectra of
surfaces 1, 2, 5, and 6. The root-mean-square amplitudes of the
surfaces are 0.030, 0.060, 0.168, and 0:172 �m, respectively.
Curve 1 is for the smoothest surface.
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�2 � 2�
Z q1

q0

dqq3C�q�; (5)

and where the elastic energy per unit area

Uel

A0
�

�E

2�1� �2�

Z q1

q0

dqq2C�q�: (6)

In Eq. (3) we have assumed that the interfacial energy ��
is independent of the increase of the surface area A� A0,
which is likely to be a good approximation for rubber
because of the high (liquidlike) mobility of the rubber
chains at the rubber surface. In any case, the increase of
the surface area is very small for all the studied substrates
(it is highest for surfaces 3 and 4 where A=A0 � 1:186) so
the first term in (3) is nearly constant.

In Fig. 3 we compare the experimentally measured
effective surface energy �eff for the seven different sur-
faces with different rms roughness amplitudes, with the
theoretical calculated values, assuming perfect contact at
the interface. Experimental data are shown for the pull-off
velocity 0.2 (green curve a) and 2 �m=s (red curve b). The
calculated results have been obtained from (3)–(6) using
the measured elastic modulus of the rubber and the ob-
served change in the interfacial energy �� for flat surfaces.
The power spectra used in the calculation were obtained
directly from the height profile using (2) as described in
Ref. [12]. For the substrate surface 7 the theory predicts a
small negative value for �eff=�� � �0:119, but in this
case the noncontact state will have a lower free energy, and
in the figure we have therefore used the value �eff � 0 for
this case.

In the present model, the physical reason for the de-
crease in the effective surface energy �eff is entirely due to
the elastic energy stored at the interface between the solids.
That is, in order for atomic contact to occur at the interface,
it is necessary to deform the elastic solid, resulting in
stored elastic energy at the interface. During pull-off this
elastic energy is ‘‘given back’’ thus helping to break the
adhesive bond between the solids. When �eff 
 ��, the
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FIG. 3 (color online). The effective surface energy as a func-
tion of the root-mean-square roughness for 7 differently prepared
surfaces. Blue curve: theory; green curve: a; and red curve: b.
These are experimental data for the pull-off velocity 0.2 and
2 �m=s, respectively.
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FIG. 4 (color online). The surface roughness power spectra
for three rough substrates. Curve 7 is for the surface exhibiting
the lowest adhesion (from theory �eff � 0), while for surfaces 3
and 4, �eff=�� � 0:657 and 0.254, respectively. The surface
area calculated from the power spectra is highest for surfaces 3
and 4 (A=A0 � 1:186 in both cases) and smaller for surface 7
�A=A0 � 1:133�.
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contact between the solids will not be complete, and in this
case the treatment presented above will not be valid
[16,24].

The agreement between theory and experiment in Fig. 3
is very good except for the two roughest surfaces. Thus, the
theory predicts �eff � 0 for surface 7, while the experiment
gives �eff � 0:135��. This may be due to the occurrence
of only partial contact between the surfaces for this case. In
fact, since the theory predicts a (small) negative �eff , the
noncontact state has a smaller free energy than the full
contact state. However, it is likely that in this case there is a
partial contact state with even lower free energy, corre-
sponding to the (small) positive value for �eff=�� ob-
served in the experiment.

We note that there is no direct relation between the
strength of the adhesion and the rms roughness amplitude
h0, or the roughness-induced increase in the total surface
area A=A0. To illustrate this, Fig. 4 shows the surface
roughness power spectra for three of the used substrates.
Curve 7 is for the surface exhibiting the lowest adhe-
sion (from theory �eff � 0), while for surfaces 3 and 4
�eff=�� � 0:657 and 0.254, respectively. The surface area
calculated from the power spectra is highest for surfaces 3
and 4 (A=A0 � 1:186 in both cases), and smaller for
surface 7 �A=A0 � 1:133�. Thus there is no correlation
between the increase in the surface area and the effective
adhesion. The reason for this is that the variation in �eff for
the different surfaces 1–7 is mainly due to variations in the
elastic energy (induced by the surface roughness), and this
is (for the complete contact case) determined by the second
moment of the surface roughness power spectra C�q�,
while the increase in the total surface area is determined
by the third moment of C�q�; see Eqs. (4) and (5). Similar,
there is no direct relation between the root-mean-square
roughness of the surfaces and the adhesional properties,
12430
since the rms roughness amplitude is determined by the
first moment of C�q�. In fact, both the theory and the
experiment show that surface 5 exhibits a larger adhesion
than surface 4, in spite of the fact that the rms roughness is
considerably larger for the former surface.

To summarize, we have studied the adhesive interaction
between elastic bodies with rough surfaces. We have
shown how the experimental data can be understood quan-
titatively when the full surface roughness power spectra is
used in the analysis.

We thank Mr. M. Pudleiner for help in preparing the
rough substrate surfaces.
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