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Negative Refraction and Focusing of Circularly Polarized Waves in Optically Active Media
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Analysis indicates that certain types of optically active media are capable of producing negative
refraction and focusing of circularly polarized waves. It is established that a slab of such material acts just
as Veselago’s hypothetical left-handed media lens, providing subwavelength resolution as Sir Pendry’s
ideal lens, but for circularly polarized waves.
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There is a long tradition of optical activity (or rotation of
the polarization vector as the wave advances) in physics
and chemistry, possibly since the time of Pasteur [1]. Chi-
rality, or handedness, satisfies reciprocity, and has been
exploited in the optical regime for a long time. Artificial
chirality at lower frequencies (rf microwave) was first
induced and experimentally verified by Lindeman [2,3]
over 80 years ago, which he accomplished with a random
collection of insulated coils of certain handedness. Bi-
isotropic media, analytically proposed by Tellegen [4]
over half a century ago, can be nonreciprocal, and is not
as popular, possibly because it has not been found in
nature. Both chiral and bi-isotropic media are isotropic,
and they become polarized when placed in a magnetic
field, and magnetized when placed in an electric field.
Bi-isotropic media is characterized by two Cherenkov
radiation cones [5] and, under special circumstances [6],
can produce dipole fields with magnetic lines, which are
open spirals that go from pole to pole, or Cherenkov
radiation with spiraling magnetic field lines.

Here we refer to ‘‘left-handed’’ media (LHM) as the
media exhibiting negative refraction, i.e., Veselago’s origi-
nal concept [7]. We do not use the ‘‘left-handed’’ term in
the context of chirality. LHM possesses simultaneous
negative permeability �, and permittivity ", resulting in
phase velocity and energy flowing in opposite directions.
Because of the scarcity of experimental materials, contro-
versy surrounds the properties of LHM [8–16]. LHM pro-
totypes are typically a periodic array of wires and split ring
resonators, of the type first proposed by Sir Pendry [17].

Veselago used Snell’s law in a planar LHM slab geome-
try, and showed that focusing both inside and outside of the
slab occurs. More recently, Sir Pendry et al. [9,10] claimed
that LHM can amplify evanescent modes allowing a com-
plete reconstruction of a point source to a perfect point
image. Here we show that a planar slab of chiral or bi-
isotropic material can act in the same fashion as Veselago’s
hypothetical LHM slab, but for circularly polarized (CP)
waves.

The constitutive relations of bi-isotropic media are
[5,6,18]

�D � " �E� � �H; �B � � �H � � �E: (1)
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Such a medium is lossless if " and� are real, and provided
� � ��. The medium becomes reciprocal if � � ��. The
bi-isotropic medium reduces to a chiral reciprocal medium
(three parameters) for � � �� � j�, where � is a real
number (lossless material). For a ej!t time convention
(suppressed throughout), we have plane wave solutions
of the form

�E � �ee�j ��� �x; �H � �he�j ��� �x (2)

for �h and �e orthogonal to the direction of propagation �̂.
Wave components possess different wave number and
impedance depending on their helicity. They are given by
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The (�) sign refers to right circularly polarized (RCP)
waves and the (�) sign to left circularly polarization
(LCP). The vectors �h and �e can be expressed as [5]

�e� � �j�� �h�; �h� �
1���
2
p �ŝ� jû	; (5)

where 
�̂ ŝ û� form a right-handed triad. For unit amplitude
�h�, we have the power law

�e� � �h�� � ���̂: (6)

And the modes are power orthogonal since
�e� � �h�� � 0: (7)

Here we are interested in backward wave type propaga-
tion. We first focus our attention on (�) RCP. One way we
can obtain isotropic backward (�) waves is by enforcing

Re f��g< 0; (8)

while simultaneously demanding ordinary LCP waves, i.e.,

Re f��g> 0: (9)

On the other hand, impedance match to the external im-
pedance �e is accomplished via

�� � �e: (10)
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FIG. 1. Geometry of RCP line source in front of a bi-isotropic
half-space.
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Conditions (9) and (10) are based on our experience with
ordinary materials, but as the analysis shows, they help
obtain a clean focal point in bi-isotropic media. To create
ideal conditions for pure RCP, we could eliminate all
propagating RCP waves by enforcing existence of evanes-
cent (�) fields only. This is accomplished via

Re f��g � 0; (11)

which is analogous to the impedance of a waveguide below
cutoff.

From (5) we see that (10) and (11) cannot be satisfied
simultaneously unless the material is not reciprocal. This is
because for reciprocal materials � � ��, which implies
�� � ��. Since (8)–(11) are four scalar conditions, it
appears that four scalar unknowns are sufficient to satisfy
them. As we have eight scalar unknowns in four complex
variables (";�; �; �), bi-isotropic media provide us with
plenty of parameters for a proper design.

Condition (11) is desirable, but not mandatory. The same
polarization rejection can be achieved, if needed, by means
of mature technologies. For instance, we can use a filter at
the front end of the material, in the manner of a frequency
selective surface. Assuming that this is the case, we can
relax (11), and use reciprocal materials. Use of � � �� �
j�, for � complex, results in
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For the particular case of free space surroundings, and an
effective index of�1 for the RCP (�) waves, so as to meet
the conditions for ‘‘perfect focusing,’’ we have
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Since the index of the (�) wave is complex depending on
", we can make the (�) wave rapidly attenuate in the
material by controlling " (subject to �=�0 � "="0).

So far we have demonstrated that we can selectively
make one of the CP waves exhibit backward wave behav-
ior. We have shown that this is possible with bi-isotropic
media, and even chiral media. We show next that we can,
indeed, obtain focusing in bi-isotropic media under the
above stated conditions (8)–(10), and imposing an effec-
tive index of �1 for the RCP waves.

For simplicity, consider the 2D geometry shown in
Fig. 1, where a point source radiating pure RCP waves
(this can be accomplished by a properly designed helical
antenna), is located at a distance ‘‘d’’ from a bi-isotropic
half-space. Previous analyses of a bi-isotropic–chiral in-
terface have considered only linearly polarized incident
plane waves and not point sources [19–21].

The field of an RCP line source of strength I� can be
obtained by setting the phasing constant to zero in Ref. [5],
in Eq. (16), and after some algebra can be rewritten as
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�H inc � �
j
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I�fk0ẑ� ẑ�rgH

�2	
0 �k0�	: (14)

As the Hankel function is representable as a sum over plane
waves (Ref. [22], p. 624), we have

H�2	0 �k�	 �
1

�

Z
C
e�j �k�		�� �x� �x0	d	 (15)

for 	 the angle formed by �k�		 and �x� �x0, and where
j �k�		j � k0. Furthermore, �x0 represents the source loca-
tion, and the contourC runs from�j1 just to the left of the
imaginary axis, to j1 just to the right of the imaginary
axis. In view of (14) and (15) we can express the inhomo-
geneous RCP field as a bundle of RCP plane waves,

�H inc �
k0

2
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2
p
�
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Z
C
e�j �k�		� �x

�
ŝ�		 � jẑ���

2
p

�
ej �k�		� �x0d	; (16)

where ŝ�		 � ẑ� k̂�		, and 
k̂�		ŝ�		ẑ� form a right-
handed triad. Since we do have some flexibility in deform-
ing the contour C, it is possible to make it independent of
the individual choice of �x� �x0. Accordingly, we define the
angle 	, as measured with respect to the y axis.

For an incident RCP plane wave components of (16), we
expect two reflected waves (RCP, LCP), and two trans-
mitted waves (RCP, LCP). Figure 2 sketches the five CP
beams, and defines the incident and reflection wave num-
bers �k1�		 and �k2�		, respectively, as well as the trans-
mission wave numbers �̂��		 and �̂��		, and the corre-
sponding ŝ��		 vectors.

From (2), (4), and (16), and upon ignoring for the time
being the phase term ej �k�		� �x0 , we can write the plane wave
fields as follows. On the free space side, the total fields are
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�ŝ2�jẑ	���

2
p R��
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FIG. 3 (color). Plot of jU� �x	j2 in the bi-isotropic medium for
x 2 
�
0; 
0�, y 2 
0; 3
0�, due to an RCP line source located
in the free space side at �x0 � �0;�
0	. Peak transmission occurs
at �x � �0; 
0	, the expected focal point for an effective index of
�1. The figure is confirmation of negative refraction, enhance-
ment of evanescent fields, and subwavelength focusing of CP
waves in bi-isotropic media. Inset: Ray optics description of the
flat bi-isotropic–chiral lens for CP waves (S � source, F=F1 the
external/internal focal regions).

FIG. 2. Circularly polarized plane wave transmission and re-
flection on a bi-isotropic half-space.
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where the first term of the equations represent the incident
RCP plane wave, and the remaining terms the reflected
RCP and LCP fields. On the bi-isotropic side we have

�HTOTAL
Biisotropic �

�ŝ� � jẑ	���
2
p e�j ���� �xT� �

�ŝ� � jẑ	���
2
p e�j ���� �xT�;

�ETOTAL
Biisotropic � �j��

�ŝ� � jẑ	���
2
p e�j ���� �xT�

� j��
�ŝ� � jẑ	���

2
p e�j ���� �xT�: (18)

Enforcing the continuity of the tangential (x̂ and ẑ) com-
ponents of the electric and magnetic fields at the y � 0
interface yields four equations for the four unknowns R�
and T�, the strengths of the reflected and transmitted RCP/
LCP waves, respectively. We do not need the generality of
the full bi-isotropic solution. Enforcement of the imped-
ance matching condition �� � �0 results in

R� � T� � 0; 1� R� � T�;

T� �
2 cos	

cos	� cos	�
:

(19)

Hence, even though an RCP impedance match eliminates
the LCP fields, there is still a reflected RCP field. This is
counterintuitive, and does not occur with ordinary isotropic
materials, for which Snell’s law dictates that 	 � 	�. The
coefficient R� can be zero if T� � 1, which can occur if
either 	 � 	� or 	 � �	�. The latter is consistent with an
index of �1, and will be adopted. Hence, the condition of
an RCP impedance match, coupled with an RCP index of
�1, results in conditions favorable for ‘‘perfect focusing’’
of RCP waves. Under these conditions, the total trans-
mitted fields can be written in terms of a potential U� �x	 as

�H �
jk0

4�
I��ẑ�r� ẑ	U� �x	;

U� �x	 �
Z
C
e�j ����		� �xej �k�		� �x0d	:

(20)

The square magnitude of U� �x	 was calculated for d �

0, in the range x 2 
�
0; 
0�, y 2 
0; 3
0�, and is pre-
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sented in Fig. 3. The expected focal point for an effective
index of �1 is observed at �x � �0; 
0	. This constitutes
confirmation of negative refraction and focusing of CP
waves in bi-isotropic media. In view of an effective index
of �1, ray tracing indicates that a slab of bi-isotropic–
chiral media can be used as a planar lens in the manner of
Veselago’s LHM, but for CP waves. This is shown in the
inset of Fig. 3, which introduces the internal F1 and
external F focal points.

Recently verified experimentally [23], j�=
�������
�"
p

j can
easily achieve a value of 1=2 (obtained after a proper
change from the Drude-Born-Fedorov notation of [23])
for a random ensemble of helices (chiral case), in a case
where the geometry was not optimized in any way. In view
of Eq. (12), this is half of the � needed to reverse the sign
of the wave number and achieve negative refraction.
Because of this, we feel a practical realization may be
possible with a random array of helices. A single resonance
model for a helix results in polarizabilities

�EE �
Ch2

1� �f=f0	
2 � if=fQ

;

�HH �
C�2�f�S	2

1� �f=f0	
2 � if=fQ

;

�EH �
�ihC2�f�S

1� �f=f0	
2 � if=fQ

; �HE � ��EH;

(21)

where S is the area of the helix loop, C the capacitance of
the helix, h the length of the dipole part of the helix, f0 the
resonant frequency, and Q the helix quality factor. The
small helices can be loaded if necessary, and embedded
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FIG. 4. Example of Maxwell-Garnett estimate for a random
helix composite in low density foam.
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randomly in a very low index foam (at a density N per
cubic meter), and spheres can be formed of the resulting
material, which can then be packed with volume fraction
�, and analyzed via the well known Maxwell-Garnett
mixing formula, which has been recently found to be
very successful for such a random array of helices [24].
We have used this approximation to verify that �� can
become �1. For instance, for f0 � 5:5 GHz, C � 8:4 pF,
Q � 300, a loop radius of 2 mm, h � 2 mm, N � 2:4�
105, and � � 0:7 (densely packed), we find that with
minimal losses, ��  �k0 at 5.6 GHz. This is depicted
in Fig. 4. It is important that the helices be identical;
otherwise, the strong resonance will weaken, reducing
the optical rotatory power, and smearing out the negative
refraction effect.

A related publication by Sir Pendry [25] appeared during
the review of this Letter. While the goal is the same as here,
it uses resonant electric dipoles in a background isotropic
chiral medium. The dipole resonance splits the otherwise
chiral transverse bands and results in negative refraction
for one of the CP waves. Unlike the present proposal, the
chiral medium is assumed frequency independent in the
range of operation. The proposed chiral element in [25] is
an interesting variant of the Swiss roll (and unlike here, it
is stacked in a 3D log pile to achieve isotropy), and is
essentially a helix made out of wide strips. In view of the
present development, we feel this element alone, if prop-
erly designed, could be capable of producing sufficient
optical rotatory power to achieve negative refraction.

Unlike LHM materials, which do not occur in nature,
chiral materials occur naturally, and there is a plethora of
them. We can then speculate on reasonable grounds that
there may be available out there an inexpensive substance,
with extremely low losses, either natural or man-made,
which satisfies the above conditions (RCP/LCP impedance
match, coupled with a corresponding RCP/LCP index of
�1 in some frequency range (perhaps optical or IR),
12390
resulting in counterintuitive refractive and focusing prop-
erties. A film of such substance will be a natural focusing
lens for CP waves. Such a desirable substance is yet to be
identified or synthesized. Among the candidates we have
the poly-L-lactic acid, a synthesized polymer with a re-
ported huge 7:2�=�m rotatory power in the visible range
[26]. Simple estimates reveal that if the polymer’s strong
rotatory power persists into the THz band, negative refrac-
tion is expected.

In summary, we have established theoretically that a slab
of certain chiral or bi-isotropic material can act in the same
fashion as Veselago’s hypothetical LHM focusing slab,
with subwavelength resolution properties as Sir Pendry’s
ideal lens, but for CP waves. The result broadens the
horizon of possibilities for achieving a ‘‘superlens,’’ and
is also an opportunity to exploit the wealth of information
available on chiral media and optically active substances.
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