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Soliton Topology versus Discrete Symmetry in Optical Lattices
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We address the existence of vortex solitons supported by azimuthally modulated lattices and reveal how
the global lattice discrete symmetry has fundamental implications on the possible topological charges of
solitons. We set a general ‘‘charge rule’’ using group-theory techniques, which holds for all lattices
belonging to a given symmetry group. Focusing on the case of Bessel lattices allows us to derive also an
overall stability rule for the allowed vortex solitons.
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Vortex solitons in nonlinear systems (for a review, see
[1]) characterized by a discrete symmetry have been nu-
merically predicted in two-dimensional arrays of evanes-
cently coupled waveguides [2], harmonic refractive-index
gratings imprinted in cubic media [3], as well as in pho-
tonic crystal fibers with defects [4]. Because of the im-
printed refractive-index modulation, such vortices can be
made stable in contrast to their ring-shaped counterparts in
uniform focusing media. Recently, vortices having unit
topological charge have been experimentally observed in
optically induced lattices in photorefractive media [5].
The very refractive-index modulation causing the stabili-
zation of vortex solitons simultaneously imposes restric-
tion on the possible topological charges of the vortices
dictated by the finite order of allowed discrete rotations
[6]. A corollary of such a result is that the maximum charge
of stable symmetric vortex in two-dimensional square
lattices is one.

However, square lattices are just one particular example
of guiding structures accessible for experimental explora-
tion. Another interesting class of such structures with a
new global rotational symmetry is constituted by azimu-
thally modulated lattices, also offering a wealth of new
opportunities. For example, in such lattices the order of
rotational symmetry may be higher than 4, in contrast to
square lattices, a property that has direct implications in the
possible topological charges of symmetric vortex solitons
supported by such lattices.

In this Letter we explore the connection existing be-
tween the lattice discrete symmetry and the topology of the
allowed vortex solitons by means of a general group-theory
approach. We find that azimuthally modulated lattices
imprinted in a focusing medium can support symmetric
vortex solitons carrying phase dislocations with topologi-
cal indices higher than one. The higher the symmetry order
of the lattice, the higher the allowed vortex topological
charge. We also address the stability of the allowed vortex
soliton families, taking as a particular example the case of
azimuthally modulated optically induced Bessel lattices.
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The optical lattice induction in anisotropic nonlinear
materials introduced in [7] opens broad prospects for cre-
ation of reconfigurable refractive-index landscapes with
different types of nondiffracting beams, including Bessel
beams [8]. Accurate approximations of Bessel beams can
be generated experimentally in a number of ways. Known
techniques include illumination of annular slit in the focal
plane of a lens, conical axicons, as well as more compli-
cated interferometric and holographic techniques (see [9]
and references therein). Thus, azimuthally modulated lat-
tices of any desired order can be optically induced by
higher-order Bessel beams [8]. Because of the diffraction-
less nature of Bessel beams, they are to be launched col-
linearly along the anisotropic nonlinear material (e.g., pho-
torefractive crystal) with a polarization orthogonal to the
soliton beams, to make use of incoherent vectorial inter-
actions [7]. The concept can be extended to all relevant
physical settings, including Bose-Einstein condensates.

Our starting point is the paraxial nonlinear equation for
the complex field amplitude q describing the propagation
of light in an azimuthally modulated lattice:
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The longitudinal � and transverse �; � coordinates are
scaled to the diffraction length and to the input beam width,
respectively. The parameter p accounts for the depth of the
refractive-index profile, whereas the function R��; �� de-
scribes the lattice profile. In the particular case of an
optical lattice induced by a higher-order Bessel beam, the
refractive-index profile features the beam’s intensity dis-
tribution Rn��; �� � J2

n��2blin�
1=2r�cos2�n��, where r �

��2 � �2�1=2, � is the azimuth angle, and blin is the pa-
rameter that sets the transverse lattice scale. In the particu-
lar case of optical lattice induction in SBN crystal biased
with dc electric field �105 V=m, for laser beams with
width 10 �m the propagation distance �� 1 corresponds
to 1 mm of actual crystal length, while amplitude q� 1
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corresponds to peak intensity about 50 mW=cm2. The
intensity of the lattice-creating wave is of the same order
and can be varied to tune p in a broad range.

The realization of rotational symmetry in azimuthally
modulated lattices is different depending on the order of
modulation n. Lattices of lowest order with n � 0 show
perfect continuous rotational symmetry since the function
R0��; �� � R0�r� has no dependence on � [8]. In terms of
group theory, the symmetry group of a lattice of zero order
is O�2�. The azimuthal modulation Rn�r;�� � cos2�n��
changes the symmetry group associated with the rotation
transformations. The rotational symmetry group of a lattice
of order n is given by the discrete point-symmetry group
C2n;v, corresponding to discrete rotations of angle �n �
�=n with respect to a rotation axis perpendicular to the
plane and intersecting it at the origin [Rn�r;�� �n� �
Rn�r;��] as well as to specular reflections with respect to
a number of planes containing the rotation axis [10]. This
fact has strong implications in the form of possible sym-
metric vortex solutions of Eq. (1): q��; �; �� � �u��; �� �
iv��; ��� exp�ib��, where u and v are real and imaginary
parts, respectively, b is a propagation constant, and m
describes topological winding number of complex field q
that can be defined by the circulation of the gradient of the
field phase arctan�v=u� around the singularity at �; � � 0.

Individual vortices are characterized by phase singular-
ity, accompanied by a single point of zero amplitude.
Discrete rotations are defined with respect to this point,
so that all our group-theory arguments will apply to indi-
vidual vortices and not to bound states of vortices whose
phases feature edges and multiple singularities. In this
context, individual vortex solutions appear as doubly de-
generated pairs belonging to the two-dimensional repre-
sentations of C2n;v (or of its subgroups) and they are
characterized by the index representation m. The charge
of these solutions is exactly provided by the index repre-
sentation m [6]. For every value of m one finds a degen-
erated vortex-antivortex pair, with charges m and �m,
respectively. Since m is limited by symmetry constraints,
an upper bound for the values of permitted vortex charges
is established if the system enjoys a rotational symmetry of
finite order N [6]: 0<m<N=2 (for even N). Since the
symmetry group of a lattice of order n is C2n;v, its sym-
metry order is N � 2n and thus even. Consequently, we
obtain one of the central results of this Letter in the form of
a ‘‘charge rule’’ for the allowed values of vortex charges in
TABLE I. Table showing the available charges and the stability stat
means that it is possible to stabilize the vortex under consideration

Lattice order Available

n � 2 m � 1 stable
n � 3 m � 1 unstable m � 2 stable
n � 4 m � 1 unstable m � 2 unstable
n � 5 m � 1 unstable m � 2 unstable
n � 6 m � 1 unstable m � 2 unstable
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a lattice of order n:

0<m 	 n� 1: (2)

We stress that this rule is obtained on the basis of general
symmetry arguments and is applicable for a whole class of
azimuthally modulated lattices, irrespective of the details
of their local shape and thus method of realization. Some
implications of (2) are readily apparent. For example,
azimuthally modulated lattices of high orders allow the
generation of symmetric vortex solitons with topological
charges higher than one, in contrast to square lattices.

We performed a comprehensive numerical analysis of
vortex soliton solutions of Eq. (1) for the case of optically
induced Bessel lattices to confirm the charge rule. We
searched for symmetric stationary vortex profiles with a
relaxation method using as initial guess functions with a
phase profile exp�im�� carrying phase singularity with
charge m. The numerical results confirmed the charge
rule in all cases. A summary of this analysis is presented
in Table I. No higher-order vortex solitons have been found
to exist above the maximum limit given by Eq. (2). The
amplitude and phase distributions for allowed vortices with
charges 1, 2, and 3 in a Bessel lattice of fourth order are
shown in Fig. 1. The presence of focusing nonlinearity
tends to increment the localization effect generating the
typical patterns of bright well-localized spots. Notice that
in sufficiently deep lattices at fixed b and p the bright spots
in the vortex intensity distribution become more pro-
nounced with the increase of vortex charge m, while the
radius of the vortex remains almost unchanged since it is
mainly determined by transverse lattice scale. This is in
contrast to vortices in uniform media that broaden notably
with increase of m at fixed b.

The properties of vortex solitons supported by fourth-
order azimuthally modulated Bessel lattice are summa-
rized in Figs. 2(a)–2(d). The vortex soliton is characterized
by its energy flow U �

R R
jqj2d�d� . The dependence

U�b� for a lowest-order vortex soliton withm � 1 is shown
in Fig. 2(a). The different behavior of the U�b� curve for a
shallow (p � 4) or a deep (p � 14) lattice indicates the
importance of the confining properties of the Bessel lattice.
The energy flow is a nonmonotonic function of the propa-
gation constant for small lattice depths (p � 4), whereas
for large values of p * 6 it monotonically increases with b.
The deeper the lattice, the more pronounced the azimuthal
modulation of the vortex intensity profile.
us of vortex solutions for different lattice orders. The stable status
by a suitable election of the Bessel lattice parameters.

charges and stability status

m � 3 stable
m � 3 stable m � 4 stable
m � 3 unstable m � 4 stable m � 5 stable
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FIG. 2. (a) Energy flow U vs propagation constant b for a
vortex soliton with m � 1. Propagation constant cutoff bco vs
lattice depth p for vortex solitons with m � 1 (b) and m � 3 (c).
(d) Real part of perturbation growth rate � vs propagation
constant at p � 28. Panels (a)–(d) correspond to fourth-order
Bessel lattice. Real part of perturbation growth rate vs propaga-
tion constant for vortex solitons in (e) third- and (f) fifth-order
lattices at p � 28.

FIG. 1. Amplitude (top row) and phase (bottom row) distribu-
tions for the vortex solitons with topological charges 1 (a), 2 (b),
and 3 (c), supported by the fourth-order Bessel lattice at p � 28.
All solitons correspond to b � 1:6. In the top row, bright regions
correspond to high light intensities and dark regions correspond
to low intensities.
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In contrast, m � 1 vortices in shallow lattices may
undertake an abrupt change of behavior at a critical value
of the propagation constant [see the inflection point of the
U�b� curve at p � 4]. With an increase of energy flow,
bright spots forming such vortices may eventually merge
into a single weakly modulated bright ring, since the con-
fining effect of the shallow Bessel lattice is not sufficient to
ensure the trapping of light in the higher refractive-index
regions. At a given value of p the energy flow of the vortex
soliton vanishes at certain cutoff bco on the propagation
constant [Fig. 2(a)]. Close to the cutoff, a vortex with
charge m � 1 broadens drastically in shallow lattices,
while in deep lattices bright well-localized spots are al-
ways resolvable in vortex intensity profile. As shown in
Fig. 2(b), for a vortex with charge m � 1 the cutoff is a
monotonically increasing function of the lattice depth p.
For higher-order vortices with charges m> 1 the depen-
dence bco�p� may be discontinuous [Fig. 2(c)]. Thus in
shallow lattices higher-order vortices cease to exist in the
cutoff without any topological transformation [left branch
of the bco�p� curve], while in deep enough lattices they
drastically broaden in the cutoff where vortex energy flow
vanishes (right branch).

Next we conducted a detailed linear stability analysis for
the allowed vortex soliton families. We searched for per-
turbed solutions of Eq. (1) in the form q � �u� up �
iv� ivp� exp�ib��, where up��; �; �� and vp��; �; ��
are real and imaginary parts of perturbation, respectively.
The linearized evolution equations for perturbation com-
ponents are @up=@� � ��1=2��?vp � bvp � 2uvup �
�3v2 � u2�vp � pRvp and @vp=@� � �1=2��?up �
bup � 2uvvp � �3u

2 � v2�up � pRup, where �? stands
for the transverse Laplacian. We solved this system nu-
merically by means of a split-step Fourier method with
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noisy initial conditions to get perturbation profiles and
their growth rates.

The results of the stability analysis are summarized in
Figs. 2(d)–2(f) and in Table I for lattices with n up to 6.
Thus in fourth- and fifth-order Bessel lattices [Figs. 2(d)
and 2(f)], vortices with m � 1 and 2 were found to be
unstable in the entire domain of their existence, while in
third-order lattice the unstable vortex carries chargem � 1
[Fig. 2(e)]. Both exponential and oscillatory instabilities
are encountered for such vortices. In contrast, a third-order
lattice can support stable vortex with charge m � 2, a
fourth-order lattice supports stable vortex with m � 3,
and a fifth-order lattice supports stable vortices with m �
3 and 4. In shallow lattices the domains of existence of such
vortices feature multiple stability and instability windows,
while for deep enough lattices such vortices become stable
in the entire domain of their existence. The physical origin
of such stabilization is the higher confinement of radiation
in regions with a higher refractive index that reduces the
2-3



FIG. 3. Propagation dynamics of vortex solitons with m � 3
(top row) and m � 1 (bottom row) supported by fourth-order
Bessel lattice in the presence of white input noise with variance

2

noise � 0:01. Bright regions correspond to high light intensities
and dark regions correspond to low intensities. Both solitons
correspond to b � 1:6 and p � 28.
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strength of nonlinear interactions of bright spots forming
the vortex. In experiment vortex stabilization would be-
come apparent upon gradual increase of intensity of the
lattice-creating beam.

Similar comprehensive linear stability analysis con-
ducted for all lattices with orders n up to 20 with various
depths 0< p< 100 enabled us to derive the important
‘‘stability rule’’ for vortex solitons, which may be stable
(i.e., a necessary but insufficient condition) only if the
vortex topological charge satisfies the condition

n
2
<m 	 n� 1 (3)

with the exception for n � 2, when the only existing
symmetric vortex with charge m � 1 may be stable.
Similar to the cases of third-, fourth-, and fifth-order
Bessel lattices [Figs. 2(d)–2(f)], vortices whose charges
satisfy the condition 3 become stable in the entire domain
of their existence for deep enough lattices.

Notice that the phase variation �� between neighboring
lattice maxima for vortices with charge 3 verifies �=2<
��<�. On intuitive grounds, this difference is consistent
with a repulsive interaction between bright spots forming
the vortex (Fig. 1), which are compensated by the lattice
and lead to stable vortex propagation, similar to the case of
multipole beams [8].

Direct numerical integration of Eq. (1) with input con-
ditions q��; �; � � 0� � w��; ���1� 	��; ���, where
w��; �� is the stationary solution and 	��; �� is the white
noise with variance 
2

noise � 0:01, fully confirmed results
of linear stability analysis. In the presence of noisy pertur-
bations, vortices whose charges satisfy the stability rule
propagate undistorted over hundreds of diffraction lengths,
while unstable representatives of vortex soliton families
are rapidly destroyed upon propagation (Fig. 3). The decay
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of unstable vortex is accompanied by progressive increase
of intensity oscillations in neighboring bright spots, until
only several spots remain in the output pattern.

In conclusion, we set a general connection between the
discrete rotational symmetry of azimuthally modulated
lattices and the topological winding number of the allowed
symmetric vortex solitons. We derived a charge rule and a
stability rule; the charge rule is intended to be general for
lattices with a given global symmetry order and does not
depend on the way in which lattice is created, while the
details of stability of the allowed vortex families are ex-
pected to depend on the local properties of the particular
lattice considered. The rules predict, for example, that, in
contrast to square lattices, suitable azimuthally modulated
lattices support stable symmetric vortex solitons with
higher-order topological charges. Because of the general
nature of the geometrical method used in our derivation,
we anticipate that a similar charge rule should hold for
scalar soliton systems with comparable azimuthal symme-
try in a variety of physical settings.
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