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Inflationary Prediction for Primordial Non-Gaussianity
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We extend the �N formalism so that it gives all of the stochastic properties of the primordial curvature
perturbation � if the initial field perturbations are Gaussian. The calculation requires only the knowledge
of some family of unperturbed universes. A formula is given for the normalization fNL of the bispectrum
of � , which is the main signal of non-Gaussianity. Examples of the use of the formula are given, and its
relation to cosmological perturbation theory is explained.
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Introduction.—The primordial curvature perturbation of
the Universe, denoted here by � , is already present a few
Hubble times before cosmological scales start to enter the
horizon [1]. Its time-independent value at that stage seems
to set the initial condition for the subsequent evolution of
all cosmological perturbations. As a result, observation
probes the stochastic properties of � , which is found to
be almost Gaussian with an almost scale-invariant
spectrum.

According to present ideas � is supposed to originate
from the vacuum fluctuations during inflation of one or
more light scalar fields, which on each scale are promoted
to classical perturbations around the time of horizon exit.
One takes inflation to be almost exponential (quasi–de
Sitter spacetime) corresponding to a practically constant
Hubble parameterH�, and the effective masses of the fields
to be much less than H�. This ensures that the fields are
almost massless and live in almost unperturbed quasi–de
Sitter spacetime, making their perturbations indeed almost
Gaussian and scale invariant. This automatically makes �
almost scale invariant, and can [though not automatically
[2,3] ] make it also almost Gaussian.

All of this is of intense interest at the present time,
because observation over the next few years will rule out
most existing scenarios for the generation of � , by detect-
ing or bounding the scale dependence and non-Gaussianity
of � . In this Letter we describe a general procedure for
calculating the level of non-Gaussianity, by means of the
�N formalism [4,5].

Defining the curvature perturbation.—Perturbations
of the observable Universe are defined with respect to
an unperturbed reference universe, which is homogen-
eous and isotropic. Its line element may be written as
ds2 � �dt2 � a2�t��ijdx

idxj defining the unperturbed
scale factor a�t�, time t, and the Cartesian spatial coordi-
nates x.

The curvature perturbation is only of interest after the
Universe has been smoothed on some scale �ka�

�1 much
bigger than the horizon H�1. To define it, one takes the
fixed-t slices of spacetime to have uniform energy density,
and the fixed-x world lines to be comoving. The spatial
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metric is [3,5–7]

gij � a2�t�e2��t;x��ij�t;x� � ~a2�t;x��ij�t;x�: (1)

In this expression, �ij�t;x� has unit determinant, so that a
volume of the Universe bounded by fixed spatial coordi-
nates is proportional to the locally defined scale factor
~a�t;x�. In the inflationary scenario the factor �ij just
accounts for the tensor perturbation, but its form is irrele-
vant here. According to this definition, � is the perturbation
in ln~a.

One can also consider a slicing whose metric has the
form in Eq. (1) without the � factor, which we call the flat
slicing. Starting from any initial flat slice at time tin, let us
define the amount of expansion N�t;x� � ln� ~a�t�

a�tin�
	 to a final

slice of uniform energy density. Then [4,5]

��t;x� � �N � N�t;x� � N0�t�; (2)

where N0�t� � ln� a�t�a�tin�
	 is the unperturbed amount of

expansion.
To make use of the above formalism we assume that in

the superhorizon regime (aH
 k), the evolution of the
Universe at each position (the local evolution), is well
approximated by the evolution of some unperturbed uni-
verse [5,8,9]. This ‘‘separate universe’’ assumption will
presumably be correct on cosmological scales because
these scales are so big [9].

By virtue of the separate universe assumption, N�t;x� is
the amount of expansion in some unperturbed universe,
allowing � to be evaluated knowing the evolution of a
family of such universes. For a given content of the
Universe it can be checked using the gradient expansion
[5,6,10,11] method, but we do not wish to assume a spe-
cific content.

The separate universe assumption leads also to local
energy conservation, so that � is conserved as long as the
pressure is a unique function of the energy density. This
consequence of the separate universe assumption was first
recognized in full generality in Refs. [5,10] [see also
Ref. [6] for the case of inflation, Ref. [8,9] for the case
2-1 © 2005 The American Physical Society
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of linear perturbation theory, and Ref. [11] for a
coordinate-free treatment].

The inflationary prediction.—The evolution of the ob-
servable Universe, smoothed on the shortest cosmological
scale, is supposed to be determined by the values of one or
more light scalar fields when that scale first emerges from
the quantum regime a few Hubble times after horizon exit.
Defined on a flat slicing, each field �i at this epoch will be
of the form �i�x� � �i � ��i�x�.

Because quasiexponential inflation is assumed, and only
light fields are considered, the perturbations ��i generated
from the vacuum are almost Gaussian, with an almost flat
spectrum [12]

P ��i
�

�
H�
2�

�
2
: (3)

Now we invoke the separate universe assumption, and
choose the homogeneous quantities�i to correspond to the
unperturbed Universe. Then Eq. (2) for � becomes

��t;x� � N���t�; �1�x�; �2�x�; � � � �

� N���t�; �1; �2; � � � �: (4)

In this expression, the expansion N is evaluated in an
unperturbed universe, from an epoch when the fields
have assigned values to one when the energy density has
an assigned value �. This expression [4,5] allows one to
propagate forward the stochastic properties of � to the
epoch when it becomes observable, given those of the
initial field perturbations.

Since the observed curvature perturbation is almost
Gaussian, it must be given to good accuracy by one or
more of the linear terms (we use the notation N;i �

@N
@�i

and

N;ij �
@2N

@�i@�j
)

��t;x� ’
X
i

N;i�t���i�x�; (5)

with the field perturbations being almost Gaussian. In this
Letter we include for the first time the quadratic terms

��t;x� ’
X
i

N;i�t���i �
1

2

X
ij

N;ij�t���i��j: (6)

They may be entirely responsible for any observed non-
Gaussianity if the field perturbations are Gaussian to suffi-
cient accuracy.

The bispectrum.—The stochastic properties of the per-
turbations are specified through expectation values which,
according to the inflationary paradigm, are taken with
respect to the time-independent (Heisenberg picture) quan-
tum state of the Universe (to be precise, the quantum state
of the Universe before it somehow collapses to give the
observed Universe). Focusing on � , we consider Fourier
components, �k �

R
d3k��t;x� exp�ik � x�.

The stochastic properties of a Gaussian perturbation are
specified entirely by the spectrum P � , defined through
h�k�k0 i � �2��

3P� �k��
3�k� k0� and P � �k� �

k3

2�2 P� �k�.
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From Eqs. (3) and (5)

P � �

�
H�
2�

�
2X
i

N2
;i: (7)

Non-Gaussianity is defined through higher correlations.
We consider only the three-point correlation. [The four-
point correlation may give a competitive observational
signature and can be calculated in a similar fashion
[13,14].] It defines the bispectrum B� through h�k�k0�k00 i �

�2��3B� �k; k
0; k00��3�k� k0 � k00�. Its normalization is

specified by a parameter fNL according to [15,16]

B� � �
6

5
fNL�k; k0; k00��P� �k�P� �k0� � cyclic	: (8)

[In first-order cosmological perturbation the gauge-
invariant gravitational potential � during matter
domination before horizon entry is � � � 5

3 � , and
our definition of fNL coincides with the definition [15]
B� � 2fNL�k; k0; k00��P��k�P��k0� � cyclic	. At second-
order these definitions of fNL differ [17].]

We shall take P � and fNL to be evaluated when cosmo-
logical scales approach the horizon and � becomes observ-
able. Observation gives P � � �5� 10�5�2, and
jfNLj & 100 [18]. Absent a detection, this will eventually
come down to roughly jfNLj & 1 [15].

Ignoring any non-Gaussianity of the ��i, our formula in
Eq. (6) makes fNL practically independent of the wave
numbers. Indeed, generalizing the result found in
Ref. [13], we have calculated

�
3

5
fNL �

�ijN;iN;jN;ij
2��iN2

;i	
2 � ln�kL�

P �

2

P
ijk
N;ijN;jkN;ki

��iN2
;i	

3 : (9)

In deriving this expression we used the spectrum �H�2��
2 of

the field perturbations, and used Eq. (7) to eliminate H� in
favor of P � . As discussed in Ref. [13], the logarithm can be
taken to be of order 1, because it involves the size k�1 of a
typical scale under consideration, relative to the size L of
the region within which the stochastic properties are speci-
fied. Except for the logarithm, fNL is scale independent if
the field perturbations are Gaussian.

If only one ��i is relevant, Eq. (6) becomes

��t;x� � N;i��i �
1

2
N;ii���i�

2; (10)

and because the first term dominates, Eq. (9) becomes

�
3

5
fNL �

1

2

N;ii
N2
;i

: (11)

In this case, fNL may equivalently be defined [15] by
writing � � �g �

3
5 fNL�

2
g , where �g is Gaussian.

To include the possible non-Gaussianity of the ��i, we
define the bispectra Bijk of the dimensionless field pertur-
bations �2�=H����i and their normalization fijk, in ex-
actly the same way that we defined B� and fNL. These
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bispectra add the following contribution to fNL in Eq. (9)

�fNL �
�ijkN;iN;jN;kfijk�k; k

0; k00�

��iN2
;i�

3=2
P�1=2
� : (12)

The fijk, generated directly from the vacuum fluctuation,
will depend strongly on the wave numbers.

Cosmological perturbation theory.—In the superhorizon
regime the nonlinear theory [5] that we have used is a
complete description. The basic expression in Eq. (4) is
nonperturbative, giving ��t;x� in terms of the initial fields
and the expansion of a family of unperturbed universes.
The second-order expansion in Eq. (6) is a matter of
convenience. As we shall see it seems to be adequate in
practice, but Eq. (4) would still be applicable if the expan-
sion converged slowly or not at all.

Cosmological perturbation theory (CPT) is completely
different. It is applicable both inside and outside the hori-
zon, being at each instant a power series in the perturba-
tions of the metric and the stress-energy tensor, together
with whatever variables are needed to completely specify
the latter and close the system of equations. During infla-
tion these variables are the components of the inflaton,
while afterwards they may involve oscillating fields and a
description of the particle content. First-order CPT is usu-
ally adequate and can describe non-Gaussianity at the level
fNL 
 1, which has to be generated by the second-order
term in Eq. (6). Second-order CPT is generally needed only
to handle non-Gaussianity at the level jfNLj  1.

Quantized CPT is needed to calculate the stochastic
properties of the initial field perturbations ��i, which are
the input for our calculation. The slow-roll spectrum in
Eq. (3) comes from the first-order calculation. The bispec-
trum is a second-order effect and has, in the context of
slow-roll inflation, been calculated in Refs. [16,19]. It is
shown elsewhere [20] that j�fNLj � 1 in this case. Higher
correlators have not been calculated yet and would give an
additional contribution to Eq. (9) which presumably is also
negligible. Exotic non-slow-roll models [21] can make
j�fNLj 
 1, but from now on we set �fNL � 0.

In the regime aH
 k, perturbation theory must be
compatible with Eq. (6). In particular, the nonlocal terms,
present at second order for a generic perturbation, must be
absent for � [see also Ref. [22] ]. Finally, CPT is needed to
evolve the perturbations after horizon entry, but that is not
our concern here. In the following, we apply our formalism
to calculate fNL in various cases and compare it with the
CPT result where that is known.

A two-component inflation model.—As a first use of
Eq. (9) we consider the two-component inflation model
of Kadota and Stewart [23], estimating for the first time the
non-Gaussianity which it predicts. The model works with a
complex field �, which is supposed to be a modulus with a
point of enhanced symmetry at the origin. Writing
� � j�jei�, the tree-level potential has a maximum at
� � 0 and depends on both j�j and �. A one-loop correc-
tion turns the maximum into a crater and inflation occurs
12130
while � is rolling away from the rim of the crater. The
curvature perturbation is supposed to be constant after the
end of slow-roll inflation. For �� �c, with �c being a
parameter of the model, it is found that N / j �c� j. Through
the first term of Eq. (9) fNL ’ j

�
�c
j which is too small ever

to be observed.
The curvaton model.—In the curvaton model [24] [see

also Ref. [25] ] the curvature perturbation � grows, from
a negligible value in an initially radiation dominated
epoch, due to the oscillations of a light field � (the curva-
ton) around the minimum of its quadratic potential
V��t;x� � 1

2m
2
��

2�t;x�, where m� is the curvaton effec-
tive mass. Because of the oscillations, the initially
negligible curvaton energy density redshifts as
���t;x� � 1

2m
2
��2

a�t;x� / a�3�t;x�, where �a represents
the amplitude of the oscillations. Meanwhile the radiation
energy density �r redshifts as a�4. Soon after the curvaton
decay, the standard Hot Big Bang is recovered and � is
assumed to be conserved until horizon reentry.

To calculate fNL using Eq. (9) we first realize that ��
(the value of� a few Hubble times after horizon exit) is the
only relevant quantity since the curvature perturbation
produced by the inflaton, and imprinted in the radiation
fluid during the reheating process, is supposed to be neg-
ligible. Thus, Eq. (11) applies. Second, we can redefine N
as the number of e folds from the beginning of the sinu-
soidal oscillations to the curvaton decay. This is because
the number of e folds from the end of inflation to the
beginning of the oscillations is completely unperturbed
as the radiation energy density dominates during that
time. Thus, N is now a function of three variables

N��dec; �osc; ��� �
1

3
ln
���osc

��dec

�
�

1

3
ln
�1

2m
2
��g����	2

��dec

�
;

(13)

where g � �osc is the amplitude at the beginning of
the sinusoidal oscillations, as a function of ��. Here
the curvaton energy density just before the curvaton decay
��dec

is expressed in terms of the total energy density �dec

at that time, the total energy density at the beginning
of the sinusoidal oscillations �osc, and g by
��dec

� 1
2m

2
��g����	

2�
�dec���dec

�osc
�3=4. After evaluating

@
@��
� g0 @@g , at fixed �dec and �osc, we obtain

N;�� �
2

3
r
g0

g
; (14)

where r �
3��dec

3��dec
�4�rdec

being �rdec
the radiation energy

density just before the curvaton decay, so that

P � �
H�
2�

N;�� �
H�r
3�

g0

g
; (15)

in agreement with first-order cosmological perturbation
theory [2]. Differentiating again we find from Eq. (11)
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fNL � �
5

6

N;����
N;2��

�
5

3
�

5

6
r�

5

4r

�
1�

gg00

g02

�
; (16)

which nicely agrees with the already calculated fNL using
first- and second-order perturbation theory [see
Refs. [2,3,26] ].

Another two-component model.—Finally we consider
the two-component inflation model of Refs. [3,27]. For
at least some number N of e folds after cosmological
scales leave the horizon, the potential is
V � V0�1�

1
2	�

�2

m2
P
� 1

2	�
�2

m2
P
�, with the first term domi-

nating, 	� and 	� being the slow-roll 	 parameters, and
mP being the reduced Planck mass. The idea is to use
Eq. (9) to calculate the non-Gaussianity after the N e folds
which, barring cancellations, will place a lower limit on the
observed non-Gaussianity.

The slow-roll equations give the field values ��N� and
��N�, in terms of those obtaining just after horizon exit;
��N� � � exp��N	�� and ��N� � � exp��N	��. This
gives V�N;�;�� and allows us to calculate the derivatives
of N with respect to � and � at fixed V. Focusing on the
case � � 0 considered in Ref. [27], we find

��
��
	��

�
	�
2

�
��
	��

�
2
�
	�
2
e2N�	��	��

�
��
	��

�
2
; (17)

in agreement with the second-order pertubation calculation
of Ref. [28]. If the observed � has a non-Gaussian part ��
equal to the last term of Eq. (17) and a Gaussian part
generated mostly after inflation, one can obtain jfNLj> 1
by choosing 	� � 0:26, 	� �

	�
2 , N � 70, and

�� � 10�2� .
This model was studied originally [3,27] using a second-

order perturbation expression for the time derivative of
"Hm2

P��, with " being the " slow-roll parameter. This
expression disagrees with ours [29] through the appearance
of non-local terms, though the order of magnitude is simi-
lar [30].
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