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Evolution of Binary Black-Hole Spacetimes
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We describe early success in the evolution of binary black-hole spacetimes with a numerical code based
on a generalization of harmonic coordinates. Indications are that with sufficient resolution this scheme is
capable of evolving binary systems for enough time to extract information about the orbit, merger, and
gravitational waves emitted during the event. As an example we show results from the evolution of a
binary composed of two equal mass, nonspinning black holes, through a single plunge orbit, merger, and
ringdown. The resultant black hole is estimated to be a Kerr black hole with angular momentum parameter
a � 0:70. At present, lack of resolution far from the binary prevents an accurate estimate of the energy
emitted, though a rough calculation suggests on the order of 5% of the initial rest mass of the system is
radiated as gravitational waves during the final orbit and ringdown.
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I. Introduction.—One of the more pressing, unsolved
problems in general relativity today is to understand the
structure of spacetime describing the evolution and merger
of binary black-hole systems. Binary black holes are
thought to exist in the Universe, and the gravitational
waves emitted during a merger event are expected to be
one of the most promising sources for detection by gravi-
tational wave observatories (LIGO, VIRGO, TAMA, GEO
600, etc.). Detection of such an event would be an unpre-
cedented test of general relativity in the strong-field re-
gime, and could shed light on many issues related to the
formation and evolution of black holes and their environ-
ments within the Universe. Given the design-goal sensi-
tivities of current gravitational wave detectors, matched
filtering may be essential to detect the waves from a mer-
ger and extract information about the astrophysical source.
During the early stages of a merger, and the later stages
of the ringdown, perturbative analytic methods should
give a good approximation to the waveform [1,2]; how-
ever, during the last several orbits, plunge, and early stages
of the ringdown, it is thought a numerical solution of the
full problem will be needed to provide an accurate
waveform.

Smarr [3] pioneered the numerical study of binary
black-hole spacetimes in the mid-1970s, where he consid-
ered the head-on collision process in axisymmetry. The full
3D problem has, for many reasons, proven to be a more
challenging undertaking, and only recently has progress
been made in the ability of numerical codes to evolve
binary systems [4–8]. However, until now no code has
been able to simulate a nonaxisymmetric collision through
coalescence and ringdown. The purpose of this Letter is to
report on a recently introduced numerical method based on
generalized harmonic coordinates [9] that can evolve a
binary black hole during these crucial stages of a merger.
At a given resolution the code will not run ‘‘forever,’’
though convergence tests suggest that with sufficient reso-
lution the code can evolve the system for as long as needed
05=95(12)=121101(4)$23.00 12110
to extract the desired physics from the problem. As an
example we describe an evolution that completes approxi-
mately one orbit before coalescence, and runs for long
enough afterwards to extract a waveform at large distances
from the black hole.

The code has several features of note, some or all of
which may be responsible for its stability properties: (1) a
formulation of the field equations based on harmonic co-
ordinates as first suggested in [10], (2) a discretization
scheme where the only evolved quantities are the covariant
metric elements, harmonic source, and matter functions,
thus minimizing the number of constraint equations that
need to be solved [which is similar to the discretization
scheme used in [11] ], (3) the use of a compactified coor-
dinate system where the outer boundaries of the grid are at
spatial infinity, hence the physically correct boundary con-
ditions can be placed there, (4) the use of adaptive mesh
refinement to adequately resolve the relevant length scales
in the problem, (5) dynamical excision that tracks the
motion of the black holes through the grid, (6) addition
of numerical dissipation to control high-frequency insta-
bilities, (7) a time slicing that slows down the ‘‘collapse’’
of the lapse that would otherwise occur in pure harmonic
time slicing, and (8) the addition of ‘‘constraint-damping’’
terms to the field equations [12,13]. This final element was
not present in the version of the code discussed in [9], and
though these terms seem to have little effect when black
holes are not present in the numerical domain, they have a
significant effect on how long a simulation with black holes
can run with reasonable accuracy at a given resolution.

An outline of the rest of the Letter is as follows. In
Sec. II we give a brief overview of the numerical method,
focusing on details not present in [9]. Section III gives
results from the simulation of one such orbital configura-
tion. We conclude in Sec. IV with a summary of future
work. More details, including convergence tests, the effect
of constraint damping, and a thorough description of the
initial data calculation, will be presented elsewhere.
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II. Overview of the numerical method.—We briefly summarize the formulation of the field equations, gauge conditions,
and initial data used here, emphasizing details that are not contained in [9]. We discretize the Einstein field equations
expressed in the following form (using units where Newton’s constant and the speed of light are equal to 1):
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FIG. 1 (color online). A depiction of the orbit for the simula-
tion described in the text (see also Table I). The figure shows the
coordinate position of the center of one apparent horizon relative
to the other, in the orbital plane z � 0. The units have been
scaled to the mass M0 of a single black hole, and curves are
shown from simulations with three different resolutions.
Overlaid on this figure are reference ellipses of eccentricity 0,
0.1, and 0.2, suggesting that if one were to attribute an initial
eccentricity to the orbit it could be in the range 0–0.2.
H� are (arbitrary) source functions encoding the gauge
freedom of the solution, ���� are the Christoffel symbols,
T�� is the matter stress tensor with trace T, � is a positive
constant multiplying the new constraint-damping terms
following [13], n� � 1=��@=@t�� � �i=��@=@xi�� is the
unit hypersurface normal vector with lapse function � and
shift vector �i (x0 � t, xi � �x1; x2; x3	 � �x; y; z	), and
C� are the constraints:

C� � H� � g���x�: (2)

We use the following to evolve the source functions:

�Ht � �	1
�� 1

�

� 	2Ht;�n�; Hi � 0; (3)

where 	1 and 
 are positive constants. Note that (3) is not
the usual definition of spatial harmonic gauge, which is
defined in terms of contravarient components H�.

We use scalar field gravitational collapse to prepare
initial data that will evolve towards a binary black-hole
system. Specifically, at t � 0 we have two Lorentz boosted
scalar field profiles, and choose initial amplitude, separa-
tion, and boost parameters to approximate the kind of orbit
that the black holes (which form as the scalar field collap-
ses) will have. The procedure used to calculate the initial
geometry is based on standard techniques [14], and is a
straightforward extension of the method described in [9] to
include non-time-symmetric initial data. The initial spatial
metric and its first time derivative is conformally flat, and
we specify a slice that is maximal and harmonic. The
Hamiltonian constraint is used to solve for the conformal
factor. The maximal conditions K � 0 and @tK � 0 (K is
the trace of the extrinsic curvature) give the initial time
derivative of the conformal factor and an elliptic equation
for the lapse, respectively. The momentum constraints are
used to solve for the initial values of the shift vectors, and
the harmonic conditions H� � 0 are used to specify the
initial first time derivatives of the lapse and shift.

III. Results.—In this section we describe results from the
evolution of one example of a scalar field constructed
binary system. The present code requires significant com-
putational resources to evolve binary spacetimes [15], and
thus to study the orbital, plunge, and ringdown phases of a
binary system in a reasonable amount of simulation time
we chose initial data parameters such that the black holes
would merge within roughly one orbit—see Fig. 1 and
Table I. The following evolution parameters in (1) and (3)
were chosen: � � 1:25=M0, 	1 � 19=M0, 	2 � 2:5=M0,

 � 5 (these parameters did not need to be fine-tuned),
where M0 is the mass of one black in the binary. This
system was evolved using three different grid hierarchies,
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which we label as ‘‘low,’’ ‘‘medium,’’ and ‘‘high’’ resolu-
tion. The low resolution simulation has a base grid of 323,
with up to 7 additional levels of 2:1 refinement (giving a
resolution in the vicinity of the black holes of �M0=10).
For computational efficiency we only allowed regridding
of level 6 and higher (at the expense of not being able to
accurately track outgoing waves). For the medium resolu-
tion simulation, we have one additional level of refinement
during the inspiral and early phases of the merger, though
have the same resolution over the coarser levels and at late
times; thus we are able to resolve the initial orbital dynam-
ics more accurately with the medium compared to low
resolution run, though both have roughly the same accu-
racy in the wave zone. The high resolution simulation has
up to 10 levels of refinement during the inspiral and early
ringdown phase, 9 levels subsequently, and the grid struc-
ture of the lower levels is altered so that there is effectively
twice the resolution in the wave zone. The reason for this
set of hierarchies is again for computational efficiency:
doubling (quadrupling) the resolution throughout the low
resolution hierarchy would have required 16 (256) times
the computer time, which, in particular, for the higher
resolution simulation is impractical to do at this stage.

Figure 2 shows the horizon masses and final horizon
angular momentum as a function of time. The Arnowitt-
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TABLE I. Some properties of the simulated equal mass binary
system described in the text. Where relevant, the units have been
scaled to the mass M0 of one of the initial black holes, measured
from the higher resolution simulation at a time after the majority
of scalar field accretion has occurred. The final black-hole mass
and spin where estimated from data as shown in Fig. 2, a little
while after the black hole formed, though not so long after as to
be affected by the ‘‘drift’’ from numerical error. The initial
proper separation was measured at t � 10M0, and is the proper
length of the piece of a coordinate line outside the apparent
horizons that connects their coordinate centers. The black holes
initially have zero spin.

Low Res. Med. Res. High Res.
ADM Mass 2:36M0 2:39M0 2:39M0

Initial BH masses 0:97M0 0:99M0 M0

Orbital eccentricity 0–0.2 0–0.2 0–0.2
Proper separation 16:5M0 16:6M0 16:6M0

Angular velocity 
M0 0.023 0.023 0.023

Final BH mass 1:77M0 1:85M0 1:90M0

BH spin parameter 0.74 0.74 0.74
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Deser-Misner (ADM) mass of the spacetime suggests
that approximately 15% of the total scalar field energy
does not collapse into black holes. The remnant scalar field
leaves the vicinity of the orbit quite rapidly (in t � 30M0,
which is on the order of the light crossing time of the or-
bit). Black-hole masses are estimated from the horizon area
A and angular momentum J, and applying the Smarr
formula:
FIG. 2 (color online). The plot to the left shows the net black-
hole mass of the spacetime in units of the mass M0 of a single
initial black hole, calculated from apparent horizon (AH) prop-
erties [using (4) with the dynamical horizon estimate for J], and
from simulations with three different resolutions. The initial
sharp increase in mass is due to scalar field accretion, the small
‘‘wiggle’’ at around 20M0 appears to be a gauge effect, and the
‘‘jaggedness’’ around the time of the merger is due to robustness
problems in the AH finder that manifest when the AH shapes are
highly distorted. To the right the Kerr parameter a of the final
black hole is shown (for clarity we only plot the results from a
single simulation), calculated using the ratio Cr of polar to
equatorial proper circumference of the AH and applying (5),
and using the dynamical horizon framework (curve labeled DH).
The loss of mass (and similarly increase in a) with time after the
merger is due to accumulating numerical error.
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The horizon angular momentum of the final black hole is
calculated using two methods (which do give zero angular
momentum when applied to the initial black holes, as
expected). First, by using the dynamical horizon frame-
work [16], though assuming that the rotation axis of the
black hole is orthogonal to the z � 0 orbital plane, and that
each closed orbit of the azimuthal vector field (which at
late times should become a Killing vector) lies in a z �
const surface of the simulation. Because of the symmetry
of the initial data, these assumptions are probably valid,
though this will eventually need to be confirmed. The
second method, following [17], is to measure the ratio Cr
of the polar to equatorial proper radius of the horizon, and
use the formula that closely approximates the function that
is valid for Kerr black holes:

a �
��������������������������������������������
1� �2:55Cr � 1:55�2

q
: (5)

As seen in Fig. 2, the initial ringing of the black hole is
quite apparent in the estimate using Cr. Remarkably, the
dynamical horizon estimate for a and average value ob-
tained using Cr agree quite closely, even shortly after the
merger when one might have expected the black hole to
still be too far from its stationary state to have either
method be applicable.
FIG. 3. A sample of the gravitational waves emitted during the
merger, as estimated by the Newman-Penrose scalar �4 (from
the medium resolution simulation). Here, the real component of
�4 multiplied by the coordinate distance r from the center of the
grid is shown at a fixed angular location, though several dis-
tances r. The waveform has also been shifted in time by amounts
shown in the plot, so that the oscillations overlap. If the waves
are measured far enough from the central black hole then the
amplitudes should match, and they should be shifted by the light
travel time between the locations (i.e., by 25M0 in this example).
That we need to shift the waveforms by more than this suggests
the extraction points are still too close to the black hole; the
decrease in amplitude is primarily due to numerical error as the
wave moves into regions of the grid with relatively low resolu-
tion.
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To estimate the gravitational waves emitted by the bi-
nary we use the Newman-Penrose scalar �4, with the null
tetrad constructed from the unit timelike normal n�, a
radial unit spacelike vector normal to r � const coordinate
spheres, and two additional unit spacelike vectors orthogo-
nal to the radial vector [18]. Far from the source, the real
and imaginary components of �4 are proportional to the
second time derivatives of the two polarizations of the
emitted gravitational wave. Figure 3 shows an example
of the real part of �4. Most of the early, short wavelength
burst of waves can be correlated with the passage of the
remnant scalar field that did not fall into the black holes
(the ‘‘noisy’’ nature of this piece of the waveform is in part
due to numerical error). This unwanted radiation leaves the
domain quite early on, and so does not significantly affect
the subsequent merger waves. Roughly the first long wave-
length oscillation in the plot can be associated with orbital
motion, and subsequent waves with the ringdown of the
final black hole.

To estimate the total energy E emitted in gravitational
waves, we use the following formula [19]

dE
dt
�
R2

4�

Z
pd�; p �

Z t

0
�4dt

Z t

0

��4dt; (6)

where ��4 is the complex conjugate of �4, and the surface
integrated over in (6) is a sphere of constant coordinate
radius R (in uncompactified coordinates). This method of
calculating the energy is quite susceptible to numerical
error, as we are summing a positive definite quantity over
all time to give a change of energy with respect to time;
thus numerical error in �4 will tend to inflate the answer.
To reduce some of this error, we filter out the high spherical
harmonic components (�‘ � jmj � 6) of �4 before ap-
plying (6). Note that the smaller integration radii (as shown
in Fig. 3) are not very far from the binary system, and so
possibly in a region where (6) is not strictly valid.
However, the larger integration radii are in regions of the
grid that do not have very good resolution (due both to the
mesh refinement structure and the spatially compactified
coordinate domain), and so numerical error (mostly dis-
sipation) tends to reduce the amplitude of the waves with
distance from the source. With all these caveats in mind,
the numbers we obtain from (6) are 4.7%, 3.2%, 2.7%,
2.3% at integration radii of 25M0, 50M0, 75M0, and
100M0, respectively [from the high resolution simulation
[20] ], and where the percentage is relative to 2M0. Another
estimate of the radiated energy can be obtained by taking
the difference between the final and initial horizon masses
(Table I)—this suggests around 5% (high resolution case).

IV. Conclusion.—In this Letter we have described a
numerical method based on generalized harmonic coordi-
nates that can stably evolve (at least a class of) binary
black-hole spacetimes. As an example, we presented an
evolution of a binary system composed of nonspinning
black holes of equal mass M0, with an initial proper
separation and orbital angular velocity of approximately
12110
16:6M0 and 0:023=M0, respectively. The binary merged
within approximately 1 orbit, leaving behind a black hole
of mass Mf�1:9M0 and angular momentum J�0:70M2

f.
A calculation of the energy emitted in gravitational waves
indicates that roughly 5% of the initial mass (defined as
2M0) is radiated. Future work includes improving the
accuracy of simulation (in particular the gravitational
waves), exploring a larger class of initial conditions (bi-
naries that are further separated, have different initial
masses, nonzero spins, etc.), and attempting to extract
more geometric information about the nature of the merger
event from the simulations.

I would like to thank Carsten Gundlach et al. for de-
scribing their constraint-damping method for the Z4 sys-
tem [13], and suggesting that it can be applied in a similar
fashion with the harmonic scheme. I would also like to
thank Matthew Choptuik, Luis Lehner, and Lee Lindblom
for stimulating discussions related to this work. I gratefully
acknowledge research support from NSF PHY-0099568,
NSF PHY-0244906, and Caltech’s Richard Chase Tolman
Fund. Simulations were performed on UBC’s vn cluster
(supported by CFI and BCKDF), and the Westgrid cluster
(supported by CFI, ASRI, and BCKDF).
1-4
*Also affiliated with the CIAR Cosmology and Gravity
Program.

[1] L. Blanchet, Living Rev. Relativity 5, 3 (2002).
[2] R. Price and J. Pullin, Phys. Rev. Lett. 72, 3297 (1994).
[3] L. Smarr, Ph.D. thesis, University of Texas, Austin, 1975.
[4] B. Bruegmann, Int. J. Mod. Phys. D 8, 85 (1999).
[5] S. Brandt et al., Phys. Rev. Lett. 85, 5496 (2000).
[6] J. Baker, B. Bruegmann, M. Campanelli, C. O. Lousto, and

R. Takahashi, Phys. Rev. Lett. 87, 121103 (2001).
[7] B. Bruegmann, W. Tichy, and N. Jansen, Phys. Rev. Lett.

92, 211101 (2004).
[8] M. Alcubierre et al., Phys. Rev. D 72, 044004 (2005).
[9] F. Pretorius, Classical Quantum Gravity 22, 425 (2005).

[10] D. Garfinkle, Phys. Rev. D 65, 044029 (2002).
[11] B. Szilagyi and J. Winicour, Phys. Rev. D 68, 041501

(2003).
[12] O. Brodbeck, S. Frittelli, P. Huebner, and O. A. Reula,

J. Math. Phys. (N.Y.) 40, 909 (1999).
[13] C. Gundlach, J. M. Martin-Garcia, G. Calabrese, and

I. Hinder, Classical Quantum Gravity 22, 3767 (2005).
[14] G. B. Cook, Living Rev. Relativity 3, 5 (2000).
[15] Typical runtimes on 128 nodes of a Xeon Linux cluster are

on the order of a few days for the lowest resolutions
attempted, to several months at the higher resolutions.

[16] A. Ashtekar and B. Krishnan, Living Rev. Relativity 7, 10
(2004).

[17] S. R. Brandt and E. Seidel, Phys. Rev. D 52, 870 (1995).
[18] At this stage we are ignoring all the subtleties in choosing

an ‘‘appropriate’’ tetrad.
[19] L. Smarr, in Sources of Gravitational Radiation, edited by

L. Smarr (Cambridge University Press, Seattle, 1978).
[20] The corresponding numbers from the medium (low) res.

runs are 5.1(7.1)%, 3.5(4.6)%, 2.5(3.2)%, 1.7(2.1)%.


