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Lower Bound on the Number of Toffoli Gates in a Classical Reversible Circuit
through Quantum Information Concepts
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The question of finding a lower bound on the number of Toffoli gates in a classical reversible circuit is
addressed. A method based on quantum information concepts is proposed. The method involves solely
concepts from quantum information—there is no need for an actual physical quantum computer. The
method is illustrated in the example of classical Shannon data compression.
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In the past ten years we have witnessed the birth and
explosive growth of the field of quantum information and
computation. The main thrust of this new field is to study
how quantum systems (such as quantum computers and
quantum communication devices) can be used to solve
certain mathematical problems or to improve communica-
tion capabilities. The crucial feature of this approach is that
although the quantum systems themselves can be studied
with pen and paper, gains are obtained only when the
quantum systems are actually used in practice. The gains
are due to new physical behavior unique to quantum sys-
tems and not shared by classical ones. In this Letter we take
a different direction. We are not interested in using quan-
tum systems; rather, we want to use the concepts and
insights gained in the study of quantum information for
solving mathematical problems.

The problem we consider here concerns lower bounds
on reversible classical circuits. Although reversible classi-
cal computation will probably not be realized in the near
future (though increasing attention is being devoted to this
issue), its study has yielded profound insights into the
theory of complexity and into thermodynamics; see [1]
for a review.

A reversible classical computation evaluates a function
f which takes n-bit input �x 2 f0; 1gn to n-bit output f� �x� 2
f0; 1gn. Each particular input has its own unique output,
thus f is invertible. A classical circuit that evaluates f can
be reduced to a sequence of elementary reversible logical
gates.Examplesof reversible one-, two-, and three-bit gates
are NOT, Controlled-NOT (C-NOT) and Toffoli (Controlled-
Controlled-NOT) gates. C-NOT applies NOT on the second bit
only if the value of a first bit is 1; Toffoli applies NOT on the
third bit only if the values of both first and second bit are 1.
Reversible one- and two-bit gates do not constitute a uni-
versal set of gates. The Toffoli gate, however, is a universal
basic gate for reversible classical computation; i.e., any
reversible classical circuit can be built up from Toffoli
gates [2].
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Although we can build any reversible circuit out of
Toffoli gates alone, an interesting conceptual question is
to find the minimal number of Toffoli gates required if one
allows for any number of one- and two-bit gates. The
problem is interesting because Toffoli gates are, in a sense,
the strongest reversible gates, and the minimal number
needed tells us about the complexity of the computation
itself. Furthermore, Toffoli gates require physical interac-
tion between 3 bits, and are therefore more difficult to
implement in practice than one- and two-bit gates, and it
might be useful to minimize their use.

We formulate the problem as follows: given a reversible
function f� �x�, what is the minimum number of Toffoli
gates needed to construct a circuit that will evaluate f� �x�
for (i) every �x or (ii) a certain subset of �x?

As far as we know, a systematic approach to this prob-
lem does not exist. In this Letter we use quantum informa-
tion concepts to address it. In quantum information
(computation) one classical bit can be encoded in two
orthogonal states of a quantum system. The main idea of
our method is to map the bits onto some special quantum
states, and the action of the logic gates onto unitary trans-
formations acting on these states. Then, the study of the
properties of the unitary transformation that is associated
with the classical reversible computation will give infor-
mation about the classical circuit. The map is

0! j0i �
1���
2
p �j0iAj0iB � j1iAj1iB�;

1! j1i �
1���
2
p �j0iAj0iB � j1iAj1iB�:

(1)

The states j0i and j1i, the ‘‘logical’’ qubits into which
the classical bits are mapped, represent entangled states of
two ‘‘constituent’’ qubits, denoted by the indexes A and B.
(Throughout this Letter we will use boldfaced fonts for the
logical qubits and normal fonts for the constituent qubits.)
Here the states j0i; j1i are associated with orthogonal states
of a two-level quantum system.
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A string of n bits is mapped on the associated quantum
state of n qubit pairs: x1x2 . . . xn ! jx1ijx2i . . . jxni. Any
computation x1x2 . . . xn ! f1� �x�f2� �x� . . . fn� �x� is mapped
on the same transformation of the corresponding quantum
states jx1ijx2i . . . jxni ! jf1� �x�ijf2� �x�i . . . jfn� �x�i. Since
we consider a reversible classical computation, the corre-
sponding quantum transformation is unitary. For example,
the action of a C-NOT gate a; b! a; a � b (a; b 2 f0; 1g) is
mapped on the unitary transformation UC-NOT: jaijbi !
jaija � bi. [Note that this does not define the unitary
UC-NOT completely as the two logical qubits in Eq. (1) do
not constitute a basis of the Hilbert space of the two
constituent qubits. Similarly the unitary quantum trans-
formation corresponding to any computation acting on n
bits is not specified completely by the above mapping.
Finally note that if we only specify a partial truth table
for the computation, then the unitary is even less specified.]

The most important property of this mapping is that any
classical reversible circuit built only from one- and two-bit
gates is mapped onto a transformation that requires neither
entanglement nor classical communication, i.e., onto a lo-
cal unitary transformation U � UA �UB where UA�UB�
acts only on the A�B� constituent qubits. For example, the
UC-NOT gate can be built from local C-NOT gates:

UC-NOT � ~UA
C-NOT � ~UB

C-NOT (2)

as can be easily checked explicitly. Here ~UA
C-NOT ( ~UB

C-NOT) is
a C-NOT gate acting on the A�B� constituent qubits in the
opposite direction to normal, i.e., with the second bit as the
control and the first bit as the target. [Such bi-lateral trans-
formations were considered in [3] for the purpose of den-
sity matrix purification.] That the quantum equivalent of
any reversible one- or two-bit gates can be constructed by a
similar local bi-lateral transformation can be verified ex-
plicitly. Hence, any circuit built from one- or two-qubit
gates is local.

We can use this property of our mapping to analyze
general circuits: given a classical reversible computation
we construct the associated quantum unitary transforma-
tion U; if U is nonlocal, the corresponding classical trans-
formation cannot be constructed solely by two-bit gates.
Furthermore, the amount of nonlocality in U gives a lower
bound on the number of Toffoli gates we need.

We define nonlocality of production, EPr
U , as the maxi-

mum amount of entanglement (measured in ebits) whichU
is capable to produce. We define nonlocality of implemen-
tation, EIm

U , as the minimum amount of entanglement
which allows one to implement U using local operations
and classical communication (LOCC). These quantities
satisfy

EPr
U � EIm

U : (3)

We denote by EPr
T and EIm

T the appropriate quantities for
quantum Toffoli gate UT (we estimate EPr

T , EIm
T below).

One possible implementation of U is to realize the
classical circuit using the nonlocal quantum Toffoli gates
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(which cost EIm
T ebits each) and the local two-bit and one-

bit gates. Hence U can be implemented using NTEIm
T ebits.

This yields the lower bound on NT :

NT 	 EIm
U =E

Im
T 	 EPr

U=E
Im
T : (4)

We now arrive at the crucial point of the method. To
determine EPr

U , EIm
U may be a very complicated task—it

might actually be as complicated as directly determining
the required number of Toffoli gates. On the other hand, it
is easy to obtain bounds on them.

To obtain lower bound on EPr
U we apply U on a test state

j�test
in i:

Uj�test
in i � j�

test
out i; (5)

where the test state can be any arbitrary superposition of
basic input states jx1ijx2i . . . jxni. We denote the amount
of nonlocality between A and B possessed by j�test

in i and
j�test

out i by Etest
in and Etest

out , respectively, where E �
S�TrAj�ih�j� � S�TrBj�ih�j� is the von Neumann en-
tropy of the reduced density matrix. (Applying U to the
test state and computing Etest

in and Etest
out is straightforward.)

The nonlocality of production in U is not less than the
entanglement difference between the two states:

EPr
U 	 jE

test
in � E

test
out j: (6)

How good are these bounds on EPr
U ? First of all, note that

any test state leads to a lower bound. However, different
test states may lead to different lower bounds because the
nonlocal content of U may not be realized in full when U
acts on a particular state. (For example, a test state of the
form j�test

in i � jx1ijx2i . . . jxni is transformed into
j�test

out i � jf1ijf2i . . . jfni and leads to no increase in entan-
glement.) Good test states can be found either by trial and
error or by systematic optimization.

A more important restriction is due to the fact that
Eq. (4) can be far from tight. This is because when imple-
menting the classical circuit some of the Toffoli gates may
increase the entanglement whereas others may decrease it.
Thus there may be more efficient ways of implementing U
than realizing the classical circuit. For instance, if U acts
on states composed of n logical qubits, then EU � 2n,
because one can always implement U by teleporting
Alice’s qubits to Bob, letting Bob implement U locally,
and teleporting Alice’s qubits back to her. This shows that
our method can only provide bounds that grow linearly in
n. On the other hand, it is known that for some problems of
classical reversible computation the number of Toffoli
gates grows exponentially [4] and for these problems our
method is very inefficient. Nevertheless we expect that in
many cases the number of Toffoli gates will grow linearly
with, or as a fractional power of, n. Bounding the actual
power may give an interesting—indeed, sometimes fun-
damental—insight.

Let us now consider the case of the Toffoli gate itself and
prove the basic fact that classical Toffoli gates cannot be
built from reversible two-bit gates. We will do this by
3-2
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FIG. 1. Implementation of nonlocal Toffoli using 2 ebits as a
resource.
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showing that under our map the quantum equivalent of the
Toffoli gate is nonlocal. Specifically we will obtain the
upper and lower bounds

1 � EPr
T � EIm

T � 2: (7)

Then, from Eqs. (4), (6), and (7) we obtain the following
lower bound on the number NT of Toffoli gates required to
carry out a computation

NT 	
jEtest

in � E
test
out j

2
: (8)

(Note that it is not essential for our method to find the exact
value of EIm

T since in general we are interested only in the
scaling of the number of Toffoli gates with the size of the
problem.)

The lower bound EPr
T 	 1 is obtained by showing that

under our map the quantum Toffoli gate is capable of
producing at least one ebit of entanglement. Consider the
test state

j�test
in i �

1

2
�j0i1j0i2j0i3 � j1i1j0i2j0i3 � j0i1j1i2j0i3

� j1i1j1i2j1i3�

�
1���
2
p j001iAj001iB �

1

2
���
2
p �j000iAj000iB

� j010iAj010iB � j100iAj100iB

� j110iAj110iB�;

where the third logical bit is the target of the Toffoli gate.
After acting with UT on j�test

in i we obtain

j�test
out i �

1

2
�j0i1j0i2j0i3�j1i1j0i2j0i3�j0i1j1i2j0i3

� j1i1j1i2j0i3�

�
1

2
���
2
p �j000iAj000iB� j001iAj001iB

� j010iAj010iB� j100iAj100iB�j011iAj011iB

� j101iAj101iB� j110iAj110iB�j111iAj111iB�:

The Schmidt coefficients of j test
in i and j test

out i are found to
be f�ig � f

1
2 ;

1
8 ;

1
8 ;

1
8 ;

1
8 ; 0; 0; 0g and f�ig �

f18 ;
1
8 ;

1
8 ;

1
8 ;

1
8 ;

1
8 ;

1
8 ;

1
8g, respectively. Hence Etest

in � 2 ebits
and Etest

out � 3 ebits and EPr
T 	 1. (In passing we note that

the quantum Toffoli gate cannot be implemented without
classical communication: if such an implementation were
possible it would violate relativistic causality.)

To obtain the upper bound EIm
T � 2 we will describe

explicitly a method for realizing the quantum map of the
Toffoli that requires 2 ebits. Consider three pairs of qubits
on which we are going to apply UT , where the states j�i1,
j�i2 are control and j�i3 is a target (see Fig. 1). It is
convenient to analyze in parallel the cases where j�i1 is
j0i1 or j1i1. The two parties start by performing local
Hadamard rotations HA�B� [acting as Hj0i � 1��

2
p 


�j0i � j1i�, Hj1i � 1��
2
p �j0i � j1i�] of A1 and B1 of the first
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pair, obtaining

j0i1 ! j00i1 �
1���
2
p �j0iA1 j0i

B
1 � j1i

A
1 j1i

B
1 �;

j1i1 ! j10i1 �
1���
2
p �j0iA1 j1i

B
1 � j1i

A
1 j0i

B
1 �:

(9)

Then the parties proceed by performing local Toffoli
gates on their particles, which can be written as

UA�B�
T � j0ih0j1 � I2 � I3 � j1ih1j1 �U23; (10)

where U23 is a local C-NOT between particles 3 and 2 (with
particle 3 as the control and particles 2 as the target). As a
result the initial states evolve to:

j00i1j�i2j�i3 !
1���
2
p �j0iA1 j0i

B
1

� j1iA1 j1i
B
1U

A
23U

B
23�j�i2j�i3;

j10i1j�i2j�i3 !
1���
2
p �j0iA1 j1i

B
1U

B
23

� j1iA1 j0i
B
1U

A
23�j�i2j�i3:

Next they swap the states of A1 and B1. This operation
utilizes two ebits and can be performed using two ordinary
teleportations in both directions. This yields

1���
2
p �j0iA1 j0i

B
1 � j1i

A
1 j1i

B
1U

A
23U

B
23�j�i2j�i3;

1���
2
p �j1iA1 j0i

B
1U

B
23 � j0i

A
1 j1i

B
1U

A
23�j�i2j�i3:

Next, they perform (10) again. The resulting states are

j00i1j�i2j�i3 and j10i1UA
23U

B
23j�i2j�i3:

Finally, they apply HA and HB again and obtain

j0i1j�i2j�i3 and j1i1UA
23U

B
23j�i2j�i3:

As we have already noted, two local C-NOT transforma-
tions are equivalent to a nonlocal C-NOT transformation.
Thus, from the last expression it follows that a nonlocal C-

NOT is applied on pairs 2 and 3 (with pair 2 as the control
and pair 3 as the target) if and only if the state of the first
3-3



FIG. 2 (color online). Entanglement as a function of string
length n for p � 0:8.
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pair is j1i. Thus this protocol implements the nonlocal
Toffoli gate and utilizes two ebits, which are needed to
swap two states in the intermediate stage. Because of
linearity of quantum mechanics all these arguments will
hold also in the case of arbitrary superposition of initial
states.

We illustrate our result (8) on the example of Shannon
data compression. We were led to consider this particular
example by our research in multiparticle entanglement
compression [5]. In fact, this is how we discovered this
method in the first place.

The method of classical compression of n-bit source
string of 0’s and 1’s, where p is the probability of each
bit to be equal 1, is based on the fact that the most probable
(typical) strings generated by the source will contain np
ones when n is large [6]. If p � 1

2 then the Shannon entropy
of the source H�p� is smaller than 1 and the number of
typical strings, 2nH�p�, is less than the total number of
strings 2n. Thus, a message generated by the source can
be compressed to a shorter message.

We consider a ‘‘Shannon compressor’’—a classical re-
versible circuit which receives as input an n-bit string
which contains np ones (i.e., a typical string) and outputs
a compressed version of the string in which only the first
log� nnp� ’ nH�p� bits carry information and the other n�1�
H�p�� redundant bits are set to some standard sequence,
e.g., to all 0’s:

x1x2 . . . xn ! f1f2 . . . fnH0nH�1 . . . 0n: (11)

Our goal is to find a lower bound on the number of
Toffoli gates needed to build the ‘‘Shannon compressor.’’
We take the initial test state to be the uniform superposition
of states with np ones:

j�test
in i � N

X

xi2f0;1g;
P
i

xi�np

jx1ijx2i . . . jxni;

where N � � nnp�
�1=2. The output state is:

j�test
out i � N

X

fi2f0;1g

jf1ijf2i . . . jfnHij0nH�1i . . . j0ni:

For fixed value of p we can calculate the entanglement
of j�test

in i and j�test
out i. The entanglement Etest

out is easy to
calculate: it equals the number of output redundant pairs,
i.e., Etest

out � n�1�H�p��. We have calculated Etest
in using a

combination of analytical and numerical techniques which
are described in [5]. Figure 2 presents our results for p �
0:8. A linear dependence of Etest

in � E
test
out on n is obtained.

Thus, the number of Toffoli gates needed to perform
Shannon compression grows at least linearly with n. For
instance, for p � 0:8 we need at least 0:2332n Toffoli
gates. Inspired by our numerical result, Buhrman has
found, using a completely different technique, an analyti-
cal proof of this lower bound [7].

In summary, we have addressed the problem of evaluat-
ing the number of Toffoli gates needed to perform classical
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reversible computations. We have proposed a method
based on quantum information concepts in which strings
of classical bits are mapped into sequences of special
nonlocal quantum states and classical reversible computa-
tions are mapped onto unitary transformations of these
quantum states. The nonlocal properties of these transfor-
mations provide information about the classical reversible
computation. In particular, if the unitary transformation is
nonlocal then the corresponding classical reversible circuit
cannot be built solely from one- and two-bit gates. The
amount of nonlocality possessed by the unitary transfor-
mation associated with any classical reversible computa-
tion provides a lower bound on the number of Toffoli gates
needed for this computation.

As an example we considered classical Shannon com-
pression and calculated the amount of nonlocality of the
associated unitary transformation. According to our nu-
merical results, the lower bound on the number of Toffoli
gates grows linearly with the size of the string n. Thus
quantum methods can provide fundamental insights about
classical computation.

We hope that our approach may prove useful for other
problems concerning classical reversible computation.
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