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We derive spin squeezing inequalities that generalize the concept of the spin squeezing parameter and
provide necessary and sufficient conditions for genuine 2-, or 3-qubit entanglement for symmetric states,
and sufficient condition for N-qubit states. Our inequalities have a clear physical interpretation as
entanglement witnesses, can be easily measured, and are given by complex but elementary expressions.
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Recently, the area of quantum correlated systems of
atoms or ions, and in particular mesoscopic ionic and
macroscopic atomic ensembles [1] has been developing
very rapidly. Spin squeezing of, say a few ions to 107

atoms is nowadays routinely achieved in such systems.
The standard tool to detect the generated forms of multi-
partite entanglement [2,3] provides the so-called spin
squeezing parameter �2 introduced in Ref. [4]. The spin
squeezing parameter is particularly appreciated by exper-
imentalists for the following reasons: (i) it has a clear
physical meaning, (ii) it can be relatively easy measured,
(iii) it is defined by a simple operation expression, (iv) it
provides a figure of merit for atomic clocks. Moreover, as
shown in [5,6], �2 is directly connected to entanglement in
atomic ensembles, providing a sufficient entanglement
condition. However, one should stress that no further in-
vestigations to relate �2 to other concepts of quantum
information have been carried out so far.

In this Letter we generalize and connect the concept of
spin squeezing parameters to the theory of entanglement
witnesses [7], i.e., such observables W that have non-
negative averages for all separable states and there exists
an entangled state % such that tr�%W �< 0. In order to
derive the generalized spin squeezing inequalities, we ex-
press state averages of the appropriate entanglement wit-
nesses in terms of the macroscopic spin operators:

Ji �
XN
a�1

1

2
�ia i � 1; 2; 3; (1)

(�i denote Pauli matrices and indices a; b; c . . . enumerate
the particles of the ensemble). We recall [4] that a state of a
spin-J system is called spin squeezed if there exists a
direction n, orthogonal to the mean spin hJi, such that

�2 � 2h�J2
ni=J < 1; (2)

where Jn � n � J.
In the proposed approach we begin by considering sym-

metric states ofN qubits first, i.e., states % supported on the
symmetrized product of individual qubit spaces H s �
Sym�C2 � . . . � C2� (Sym denotes symmetrization). We
then use the fact that for symmetric states of 2 and 3 qubits
separability is equivalent to positivity of the so-called
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partial transpose of a state [8] (PPT condition [9]). From
that we derive the complete families of generalized spin
squeezing inequalities, which provide necessary and suffi-
cient conditions for genuine 2-, or 3-qubit entanglement for
symmetric states; at the same time they provide a sufficient
condition for general states of N qubits [10]. Our results
imply that spin squeezing leads to the genuine 2-qubit
entanglement (i.e., the corresponding reduced 2-qubit den-
sity matrices are entangled) [6]. For symmetric states the
converse is also true: 2-qubit entangled states show a
specific type of spin squeezing. In addition, we obtain
somewhat simpler necessary conditions for the 3-qubit
case, that lead to entanglement not implied by the standard
spin squeezing. The proposed novel inequalities, similarly
as the squeezing parameter, (i) have a clear physical mean-
ing in terms of generalized squeezing and entanglement
conditions, (ii) can be relatively easy measured, and
(iii) are given by complex, but elementary expressions.

The simplest form of entanglement that a multiqubit
state % can possess is a 2-qubit entanglement: % is 2-qubit
entangled if for some qubits a and b the reduced density
matrix

%ab � tr1...:â...b̂...N% (3)

is entangled (the hats over indices mean that those indices
are omitted.) Let us first consider symmetric states. Then
all the reductions %ab are of the same form and act in a
symmetric subspace of C2 � C2 —the space of qubits a
and b. The PPT criterion [9] implies that %ab is entangled
iff there exists a vector  such that

tr ab�%abj ih jT1�< 0; (4)

where transpose is defined with respect to the standard
basis j0i; j1i. As  we can take any eigenvector of %T1

ab,
corresponding to a negative eigenvalue.

From the explicit form of %T1
ab we deduce that j i can be

parametrized as follows [11]: j i � �j00i � �j01i �
��j10i � �j11i, with �;� 2 R. Hence the coefficients of
j i form a Hermitean matrix: � CD	C;D�0;1. We can diago-
nalize it:  CD � ~U�AC�AB

~UBD, where � � diag�sin��=2;

 cos��=2�	, �� � � � �, ~U 2 SU�2�, and then define
2-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.120502


PRL 95, 120502 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
16 SEPTEMBER 2005
U �
P
C;D�0;1

~UCDjDihCj to finally obtain the following
parametrization:

j i �U� �Uj 0i; j 0i � sin
�
2
j00i� cos

�
2
j11i (5)

(we have fixed the overall phase). Substituting (5) into (4)
leads to the condition:

tr ab�%abU �Uj 0ih 0j
T1Uy �Uy�< 0: (6)

Note that j 0ih 0j
T1 can be decomposed into Pauli

matrices:

j 0ih 0j
T1 �

1

4
sin2 �

2
�1� �z� � �1� �z�

�
1

4
cos2 �

2
�1� �z� � �1� �z�

�
1

4
sin���x � �x � �y � �y�; (7)

and the adjoint action of SU(2) in (6) induces a SO(3)
rotation R of �i: U�iUy � Rij�

j (here and throughout we
sum over repeated indices). We will denote the axes of the
rotated frame by k; l;n.

Using (7) we can express the inequality (6) through the
rotated total spin operators (1). We first observe that
trab�%abj ih j

T1� � tr�%j abih abj
T1�, where j abi is the

natural embedding of j i into H . Since all %ab are of the
same form, we can sum (6) over all pairs of qubits:

P
habi �PN�1

a�1

PN
b�a�1 and use the identity:

P
habi�

i
a � �ib �

2�Ji�2 � N=2 to obtain the following inequality [12]:

�sin��
�
N2

4
� hJ2

ni

�
� �N � 1��cos��hJni

� hJ2
ni �

N�N � 2�

4
< 0; (8)

where the averages are taken with respect to %.
Let us now fix the direction n and minimize the left hand

side of the inequality (8) with respect to �. We find that the
inequality (8) is satisfied if and only if

hJ2
ni�

N�N�2�

4
<

�������������������������������������������������������������
N2

4
�hJ2

ni

�
2
��N�1�2hJni

2

s
: (9)

For a general, i.e., not necessarily symmetric, state %we
can still test entanglement of all the bipartite reductions
%ab with the same vector (5). The sum 2 tr�%

P
habij abi

h abjT1� is then not greater than the left hand side of (8) due
to [12] and we finally obtain from (9):

Criterion for bipartite entanglement.—If there exists a
direction n such that the following inequality holds

4h�J2
ni

N
< 1�

4hJni
2

N2 ; (10)

then the state % possesses bipartite entanglement. For
symmetric states the above condition is both necessary
and sufficient.
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To relate the above criterion to the standard spin squeez-
ing condition (2) for spin-J states, note that if (2) is
satisfied for some direction n then so is (10) as hJni � 0
and J � N=2. Hence, spin squeezed states possess 2-qubit
entanglement (for symmetric states this was proven in
Ref. [6]). For symmetric states, for which J � N=4, the
(modified) converse also holds: condition (10) implies
existence of a spin component Jn such that h�J2

ni<N=4.
This differs from the standard definition of spin squeezing
(2) in that the direction n need not be orthogonal to hJi.
Nevertheless, we also call such states spin squeezed.

Let us now consider the case when % possesses genuine
3-qubit entanglement, i.e., for some triple of qubits abc,
the reduced density matrix

%abc � tr1...â...b̂...ĉ...N% (11)

is 3-party entangled. If we again consider symmetric states
first, then PPT criterion is still necessary and sufficient for
separability, since Sym�C2 � C2 � C2� is a subspace of
C2 � C3. Thus we can proceed as before.

A vector j i, corresponding to any negative eigenvalue
of %T1

abc,must be necessarily a 3-party entangled vector
from C2 � Sym�C2 � C2�. The parametrization of such
vectors was found in Ref. [13]; there are two families:

j i � A � B � BjGHZi; (12)

j i � A �U �UjWi; (13)

where matrices A;B2SL�2;C�, U2SU�2�, and jGHZi�
�1=

���
2
p
��j000i�j111i�, jWi � �1=

���
3
p
��j011i � j101i �

j110i�. The action of SL�2;C� on the Pauli matrices in
the decomposition of j ih jT1 now induces restricted, i.e.,
orientation and time-orientation preserving, Lorenz trans-
formations:

A���AT���
	 �	; B��By�L�	 �	; �0�1 (14)

(Greek indices run through 0 . . . 4). Hence we obtain the
following inequality, analogous to (6):

tr abc�%abcj ih jT1� �
1

8
K���h��a � �

�
b � �

�
c i< 0;

(15)

where

K�����;L;L���0
�L

0
�L

0
���0

�L
3
�L

3
���1

�L
1
�L

1
�

�2�3
�L

0
��L

3
����1

�L2
�L

2
��2�2

�L1
��L

2
��;

(16)

for the GHZ family (12), or

K�����; R; R� �
1

3
f3�0

�R
0
�R

0
� � 3�3

�R
3
�R

3
� � 2�0

�R
0
��R

3
��

��3
�R

0
�R

0
� ��0

�R
3
�R

3
� � 2�3

�R
0
��R

3
��

� 4�1
�R

0
��R

1
�� � 4�1

�R1
��R

3
��

� 4�2
�R

0
��R

2
�� � 4�2

�R
2
��R

3
��g (17)

for the W family (13). Here R�	 is the four-dimensional
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embedding of the rotation generated by U from (13) and
round brackets denote symmetrization.

In order to express the inequality (15) through % aver-
ages of the spin operators (1), we introduce an artificial
time component J0 � �N=2�1. The operators J� � �J0; Ji�
do not constitute relativistic generalization of the operators
Ji and we introduce them just for notational reasons. Since
%abc is symmetric, the indices ��� in (15) can be symme-
trized. Then after summing (15) over all triples of qubitsP
habci �

PN�2
a�1

PN�1
b�a�1

PN
c�b�1 , we can use the identity:

3
X
habci

���a � �
�
b � �

��
c � 4J��J�J�� � 6f���� J�J��

� 2f���� f���	 J	; (18)

where f0�
� � f�0

� � 
��, fij� � i
P
l�
ijl
l� � 
ij
0

�, to fi-
nally obtain:

Criterion for tripartite entanglement.—A symmetric
state % possesses a genuine tripartite entanglement iff there
exist two restricted Lorenz transformations �, L, or a
restricted Lorenz transformation � and a rotation R, such
that

K�����f2hJ
�J�J�i � 3f��� hJ��J��i � f

��
� f����	 hJ	ig< 0

(19)

holds, with K��� given by (16), or by (17), respectively.
The above criterion also serves as a sufficient condi-

tion for tripartite entanglement for a general state %,
with the modification that K��; L; L� or K��; R; R� in
(19) have to be substituted with �1=3��K��; L; L� �
K�L; �; L� � K�L; L; ��	 or �1=3��K��; R; R� �
K�R; �; R� � K�R; R; ��	, respectively, to achieve the
index symmetrization.

The search for matrices �, L can be difficult due to
noncompactness of the restricted Lorenz group. It is there-
fore desirable to develop some simpler conditions as well.
For mesoscopic systems with not too large N we may do
so, using some specific witnesses that detect genuine GHZ-
type, or genuine W-type entanglement, found in Ref. [14]:

W GHZ �
3

4
1� jGHZihGHZj; (20)

W W1
�

2

3
1� jWihWj; (21)

W W2
�

1

2
1� jGHZihGHZj; (22)

where, in order to be more general, we may now define the
vectors jGHZi and jWi in an arbitrary frame k; l;n, rotated
with respect to the original one. The witnesses W GHZ

detect states of GHZ class which are neither of the W
class, nor biseparable. Finally, the witnesses WW1

and
WW2

detect states of GHZ or W class, which are not
biseparable [14]. Proceeding as before and using the
same witnesses (20)–(22) for all tripartite reductions %abc
of a general state %, we get necessary conditions for:
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GHZ-type entanglement.—If for a state % there exist
orthogonal directions k; l;n such that the following in-
equality is fulfilled

�
1

3
hJ3

ki � hJlJkJli �
N � 2

2
hJ2

ni

�
1

3
hJki �

N�N � 1��5N � 2�

24
< 0; (23)

then the state % possesses a genuine GHZ-type
entanglement.

GHZ- or W-type entanglement.—If for a state % there
exist orthogonal directions k; l;n such that one of the
following inequalities is fulfilled

hJ3
ni�2hJlJnJli�2hJkJnJki�

N�2

2
�2hJ2

ki�2hJ2
l i

�hJ2
ni��

N2�4N�8

4
hJni�

N�N�2��13N�4�

24
<0

(24)

�
1

3
hJ3

ki� hJlJkJli�
N�2

2
hJ2

ni�
1

3
hJki�

N2�N�2�

8
<0;

(25)

then the state % possesses a genuine 3-qubit (GHZ- or
W-type) entanglement.

The above spin squeezing criteria (10), (19), and (23)–
(25), constitute the main result of this Letter. The inequal-
ities (23) and (25) can be further simplified if we choose
the directions k;n such that hJki � hJni � 0. Let us fur-
ther assume that hJ2

ki � N=4, hJ2
ni � N=4, so that there is

no spin squeezing in the sense of the definition (2). Then
from criteria (23) and (25) it follows, that if

�
1

3
hJ3

ki � hJlJkJli �
N�5N2 � 10N � 8�

24
< 0 (26)

or

�
1

3
hJ3

ki � hJlJkJli �
N�N � 1��N � 2�

8
< 0 (27)

holds, then the state % possesses a genuine GHZ or 3-qubit
entanglement, respectively. Thus, in this specific situation,
the inequalities (26) and (27) detect a different type of
entanglement than that implied by the standard spin
squeezing [5,6].

Generalization of the above procedure to study the en-
tanglement between more qubits is straightforward—one
uses inequalities of the type tr�%W �< 0 with appropriable
witnesses W . However, for the case of four or more qubits
the PPT criterion is no longer sufficient and only necessary
conditions of the type (23)–(25) can be obtained.

Let us conclude with a general remark concerning full
(i.e., N-qubit) separability of a symmetric state and a
connection to the method of Ref. [15]. Every symmetric
state % of N qubits admits an analog of Glauber-Sudarshan
P representation [16,17]:
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%�
Z
S2
d�P��;�j�;ih�;j� . . .�j�;ih�;j; (28)

where d� � sin�d�d is the volume element on the
Bloch sphere, and j�;i � cos��=2�j0i � ei sin��=2�j1i
is a spin coherent state of a single qubit. Note that every
qubit is representable in this form. The representation (28)
is not unique, as in the decomposition of P��;� over
spherical harmonics Ylm, % determines only terms with l �
N, and hence P��;� can be chosen to be a polynomial in
the Cartesian coordinates on the sphere. Now the following
fact holds [18,19]:

A symmetric state % is fully separable iff there exists a
representation (28) where P��;�d� is an element of a
probabilistic measure on S2:

Proof.—Implication( is obvious as the integral in (28)
is a norm limit of separable states. To prove the implication
) , observe that if % is separable, then it can be decom-
posed as % �

P
kpkj�k;kih�k;kj � � � � � j�k;ki

h�k;kj, pk � 0,
P
pk � 1, as vectors of the form

j�k;kih�k;kj � � � � � j�k;kih�k;kj are the only sym-
metric product vectors. We define then P��;� �P
kpk
�cos�� cos�k�
��k�; the expansion of 
’s

over Ylm can be truncated at l � N �.
We observe that if W is an entanglement witness, then

tr �%W � �
Z
d�P��;�w��;� (29)

where w��;� � h��;��NjW j��;��Ni is a positive
semidefinite polynomial of the Nth order in the Cartesian
coordinates. Hence, the criteria (8) and (19), with the
reversed inequality signs, can be interpreted as necessary
and sufficient conditions forP��;�d� to be an element of
a probabilistic measure for N � 2; 3, respectively.

The above fact establishes an interesting link between
separability of symmetric states and the problem of de-
scription of classical states of a 1D harmonic oscillator
[15,20]. In the latter problem, classical states are in one-to-
one correspondence with probabilistic measures on R2. We
have proved in [15] that, among some specific subclass of
states, the classical ones are detected by observables, aris-
ing from positive semidefinite polynomials which are sums
of squares of other polynomials.

Summarizing, we have introduced a method of deriving
generalized spin squeezing inequalities, that characterize
genuine N-qubit entanglement. The results of the paper
provide connection of spin squeezing to entanglement
witnesses, and an alternative physical meaning to spin
squeezing as qualitative and quantitative characterization
of the N-qubit entanglement. The inequalities can be di-
rectly measured and provide novel entanglement detection
tools for macroscopic atomic ensembles.

We thank A. Acı́n, M. Mitchell, and J. Eschner for
discussions, and the Deutsche Forschungsgemeinschaft
(SFB 407, SPP 1078, GK 282, 436 POL) and the EU
Programme QUPRODIS for support.
12050
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