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Alice Falls into a Black Hole: Entanglement in Noninertial Frames
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Two observers determine the entanglement between two free bosonic modes by each detecting one of
the modes and observing the correlations between their measurements. We show that a state which is
maximally entangled in an inertial frame becomes less entangled if the observers are relatively
accelerated. This phenomenon, which is a consequence of the Unruh effect, shows that entanglement
is an observer-dependent quantity in noninertial frames. In the high acceleration limit, our results can be
applied to a nonaccelerated observer falling into a black hole while the accelerated one barely escapes. If
the observer escapes with infinite acceleration, the state’s distillable entanglement vanishes.
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Entanglement is a property of multipartite quantum
states that arises from the tensor product structure of the
Hilbert space and the superposition principle. It is consid-
ered to be a resource for quantum information tasks such as
teleportation [1] and has applications in quantum control
[2] and quantum simulations [3]. Nonrelativistic bipartite
entanglement can be quantified uniquely for pure states by
the von Neumann entropy, and for mixed states several
measures have been proposed such as entanglement cost,
distillable entanglement, and logarithmic negativity [4].
Understanding entanglement in the relativistic framework
is crucial from both fundamental and practical perspec-
tives. Relativistic space-time presents naturally a more
complete setting for theoretical considerations and many
experimental setups require such a treatment. This pro-
gram is therefore an important and topical one. It is only in
this framework that we can understand quantum informa-
tion tasks involving entanglement between moving observ-
ers. A central question in the field of relativistic quantum
information is whether entanglement is observer indepen-
dent. So far, it has been shown that entanglement between
inertial moving parties remains constant although the en-
tanglement between some degrees of freedom can be trans-
ferred to others [5].

In this Letter we investigate the entanglement between
two modes of a noninteracting massless scalar field when
one of the observers describing the state is uniformly
accelerated. We consider a maximally entangled pure state
in an inertial frame and describe its entanglement from a
noninertial perspective. Our results imply that only inertial
observers in flat space-time agree on the degree of entan-
glement, whereas noninertial observers see a degradation.
While Minkowski coordinates �t; z� are the most suitable to
describe the field from an inertial perspective, Rindler
coordinates ��; �� are appropriate for discussing the view-
point of an observer moving with uniform acceleration.
Two different sets of Rindler coordinates, which differ
from each other by a sign change in the temporal coordi-
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nate, are necessary for covering Minkowski space. These
sets of coordinates define two Rindler regions that are
causally disconnected from each other. A particle under-
going uniform acceleration in a given Rindler region re-
mains constrained to it and has no access to the other
Rindler sector. The solutions of the Klein-Gordon equation
for a massless scalar field in Minkowski coordinates are
related to the solutions of the equation in Rindler coordi-
nates through Bogoliubov transformations. Using these
transformations one finds that the ground state of a given
mode seen by an inertial observer in Minkowski coordi-
nates corresponds to a two-mode squeezed state in Rindler
coordinates [6]. These two modes, respectively, correspond
to the field observed in the two distinct Rindler regions. An
observer moving with uniform acceleration in one of the
regions has no access to field modes in the causally dis-
connected region. Therefore, the observer must trace over
the inaccessible region losing information about the state,
which essentially results in the detection of a thermal state.
This is known as the Unruh effect [7].

A consequence of this effect is that an entangled pure
state seen by inertial observers appears mixed from an
accelerated frame. In this case entropy no longer quantifies
entanglement. However, it is possible to determine the
entanglement of such a state using the logarithmic nega-
tivity which is a full entanglement monotone that bounds
distillable entanglement from above [8]. In our analysis we
use the mutual information [9] to quantify the state’s total
correlations (classical plus quantum). It is interesting to
note that the Schwarzschild space-time very close to the
horizon resembles Rindler space in the infinite acceleration
limit [10]. Therefore our technique can be applied to study
the entanglement between two scalar modes seen by ob-
servers near an event horizon. We will see that when two
modes of the field are maximally entangled in an inertial
frame, the presence of the horizon degrades the entangle-
ment seen by one observer falling and the other escaping
the fall into a black hole. The state remains only classically
4-1 © 2005 The American Physical Society
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correlated when the acceleration approaches infinity. We
prove this by showing that, in the infinite acceleration limit
in Rindler space, the logarithmic negativity is zero.

To formalize the above, consider that two modes, k and
s, of a free massless scalar field in Minkowski space-time,
are maximally entangled from an inertial perspective; i.e.,
the quantum field is in a state

1���
2
p �j0si

Mj0ki
M � j1si

Mj1ki
M�: (1)

The states j0jiM and j1jiM are the vacuum and single
particle excitation states of the mode j in Minkowski
space. We assume that Alice has a detector which only
detects mode s and Rob has a detector sensitive only to
mode k. If Rob undergoes uniform acceleration a, the
states corresponding to mode k must be specified in
Rindler coordinates in order to describe what Rob sees.
Considering only one spatial dimension z, the world lines
of uniformly accelerated observers in Minkowski coordi-
nates correspond to hyperbolae, to the left (region I) and
right (region II) of the origin, bounded by lightlike asymp-
totes constituting the Rindler horizon. The Rindler coor-
dinates are defined by

t�a�1ea� sinha�; z�a�1ea�cosha�; jzj<t;

t��a�1ea� sinha�; z�a�1ea� cosha�; jzj>t;
(2)

where the hyperbolae correspond to the spacelike coordi-
nates � and � is the proper time, i.e., the length of the
hyperbolic world line measured by the Minkowski metric.
The Minkowski vacuum state, defined as the absence of
any particle excitation in any of the modes

j0iM �
Y
j

j0ji
M; (3)

can be expressed in terms of a product of two-mode
squeezed states of the Rindler vacuum [6],

j0ki
M �

1

coshr

X1
n�0

tanhnrjnkiIjnkiII; (4)

coshr � �1� e�2����1=2; � � jkjc=a; (5)

where jnkiI and jnkiII refer to the mode decomposition in
region I and II, respectively, of Rindler space. Each
Minkowski mode j has a Rindler mode expansion given
by Eq. (4). In our problem, we consider detectors sensitive
to a single Minkowski mode s for Alice and k for Rob and
we consider that the rest of the modes in the field are in the
vacuum. In our analysis we trace over all the modes except
for s and k. The result of this trace is a pure state because
different modes j and j0 do not mix.

Using Eq. (4) and

j1ki
M �

1

cosh2r

X1
n�0

tanhnr
������������
n� 1
p

j�n� 1�kiIjnkiII;
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we can rewrite Eq. (1) in terms of Minkowski modes for
Alice and Rindler modes for Rob. Since Rob is causally
disconnected from region II, we must trace over the states
in this region, which results in a mixed state

�AR�
1

2cosh2r

X
n

�tanhr�2n�n;

�n�j0nih0nj�

�����������
n�1
p

coshr
j0nih1n�1j�

�����������
n�1
p

coshr
j1n�1ih0nj

�
�n�1�

cosh2r
j1n�1ih1n�1j; (6)

where jnmi � jnsiMjmkiI. The partial transpose criterion
[11] provides a sufficient criterion for entanglement. If at
least one eigenvalue of the partial transpose is negative,
then the density matrix is entangled; but a state with
positive partial transpose can still be entangled. This type
of entanglement is called bound or nondistillable entangle-
ment [8]. We obtain the partial transpose by interchanging
Alice’s qubits and we find the eigenvalues in the �n; n� 1�
block to be

�n� �
tanh2nr

�4cosh2r�

��
n

sinh2r
� tanh2r

�
�

������
Zn

p �
;

where

Zn �
�

n

sinh2r
� tanh2r

�
2
�

4

cosh2r
:

It is clear that for finite acceleration �r <1� one eigen-
value is always negative; thus the state is always entangled.
Only in the limit r! 1 could the negative eigenvalue
possibly go to zero. To investigate this further, we sum
over all the negative eigenvalues and calculate the loga-
rithmic negativity. This entanglement monotone is defined
asN���� log2jj�

T jj1 where jj�T jj1 is the trace norm of the
density matrix �. The result is N��AR� � log2�

1
2cosh2r

� ��
where

� �
X1
n�0

tanh2nr

2cosh2r

�������������������������������������������������������������
n

sinh2r
� tanh2r

�
2
�

4

cosh2r

s
:

For vanishing acceleration (r � 0), N��AR� � 1 as ex-
pected. For finite acceleration the entanglement is de-
graded (Fig. 1). The limit r! 1 can be explored by
analyzing an upper and lower bound on the negativity
constructed by bounding the sum in the above equation
by two sums that can be carried out exactly. We find

1 � �<
2cosh2r� 2 coshr

2cosh2r
:

Since the bounds converge to 1, the negativity is exactly 0
in the limit. This means that the state has no longer
distillable entanglement. We can also estimate the total
amount of correlation in the state by calculating the mutual
information, defined as I��AR� � S��A� � S��R� �
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FIG. 2. Mutual information as a function of cosh�r�.
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FIG. 1 (color online). The negativity as a function of the
acceleration r.
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S��AR�, where S��� � �Tr 	�log2���
 is the entropy of
the density matrix �. The entropy of the joint state is

S��AR� � �
1

2cosh2r

X1
n�0

tanh2nrLn;

Ln �
�
1�

n� 1

cosh2r

�
log2

�
tanh2nr

2cosh2r

�
1�

n� 1

cosh2r

��
:

(7)

We obtain Rob’s density matrix in region I by tracing over
Alice’s states; its entropy is

S��RI� � �
1

2cosh2r

X1
n�0

tanh2nrMn

Mn �

�
1�

n

sinh2r

�
log2

tanh2nr

2cosh2r

�
1�

n

sinh2r

�
:

(8)

Tracing over Rob’s states we find Alice’s density matrix:

�M
A �

1

2
�j0ih0j � j1ih1j�; (9)

whose entropy is S��A� � 1. The mutual information is

I�N� � 1�
1

2
log2�tanh2r� �

1

2cosh2r

XN
n�0

tanh2nrDn;

Dn �

�
1�

n

sinh2r

�
log2

�
1�

n

sinh2r

�

�

�
1�

n� 1

cosh2r

�
log2

�
1�

n� 1

cosh2r

�
;

which we plot in Fig. 2. For vanishing acceleration, the
mutual information is 2. As the acceleration increases, it
becomes smaller, converging to unity in the limit of infinite
acceleration. Note that a maximally mixed state of maxi-
mally entangled states has mutual information equal to
one. Since the distillable entanglement in the infinite ac-
celeration limit is zero, we know that in this limit the total
correlations consist of classical correlations plus bound
entanglement. The entropy of the density matrices for
12040
Rob and Alice in region I and Rob in region II are equal
S��ARI� � S��RII�. This is because the state in Eq. (1) is
pure, and therefore the entropies of the reduced density
matrices of any bipartite division of the system are equal.
In the limit of infinite acceleration S��ARI� � 1. The
modes in region II are maximally entangled with the state
in region I. When the bosons are maximally entangled, for
vanishing acceleration, there is no distillable entanglement
with region II. For finite acceleration, the entanglement
between the bosons is degraded as the entanglement with
region II grows. In general, entanglement in tripartite pure
states cannot be arbitrarily distributed amongst the sub-
systems [12]. This phenomenon, called entanglement shar-
ing, explains here why the entanglement between the
bosons is degraded as acceleration grows.

Our results for the infinite acceleration limit describe the
entanglement of the two bosonic modes seen by Alice and
Rob in the case that they are extremely close to the horizon
of a static black hole. The Schwarzschild space-time de-
scribes the geometry of space-time for a spherical non-
rotating mass m. Considering only the radial component,
the metric is

ds2 � �

�
1�

2m
R

�
dT2 �

�
1

1� 2m=R

�
dR2: (10)

The presence of a Schwarzschild black hole corresponds to
a region causally cut off from the rest of space-time by an
horizon at R � 2m. Changing coordinates so that R�
2m � x2=8m, we have 1� 2m=R � �Ax2�=	1� �Ax�2
 �
�Ax�2 near x � 0 with A � 1=4m. This means that dR2 �
�Ax�2 and thus, very close to the horizon of the black hole
at R � 2m, the Schwarzschild space-time can be approxi-
mated by Rindler space

ds2 � ��Ax�2dT2 � dx2; (11)

where the acceleration parameter a � A�1. The infinite
acceleration limit corresponds to Rob moving on a trajec-
tory arbitrarily close to the Rindler horizon; in the context
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of a black hole, this is arbitrarily close to the event horizon.
Therefore, our analysis can be applied to the case of Alice
falling into the black hole while Rob escapes. Each of them
measures one of the modes and Rob sends the results of his
experiment to Alice. Alice can then compare the results
and estimate the entanglement between the modes.

If we considered Alice to be accelerated as well, the
density matrix would be mixed to a higher degree, resulting
in a higher degradation of entanglement. Only two inertial
observers in that space would agree that the state inves-
tigated is maximally entangled. This shows that entangle-
ment is an observer-dependent quantity in noninertial
frames. The presence of a horizon for the uniformly accel-
erated observers results in a loss of information producing
the degradation in the entanglement. In flat space-time one
could prescribe a well-defined notion of entanglement by
stating that only inertial observers are good observers of
entanglement. This is not a problem in this case since
inertial observers have a preferred role in flat space-time.
In curved space-time, even two nearby inertial observers
are relatively accelerated, due to the geodesic deviation
equation. The results of this Letter strongly suggest that in
curved space-time not even two inertial observers agree on
the degree of entanglement of a given bipartite quantum
state of some quantum field. The detailed analysis of
entanglement between modes of a quantum field on a
curved space-time, however, is more involved, and will
be treated elsewhere [13].

With the intention of investigating entanglement be-
tween accelerated observers, the state fidelity in a tele-
portation protocol was studied [14] using relatively
accelerated cavities. It was found that the fidelity decreases
as the acceleration grows. Since state fidelity in conven-
tional teleportation protocols is related to entanglement,
the authors interpret this result as an indication of entan-
glement degradation. Unfortunately, the mode expansions
used in that work correspond to those of free space.
Although there is some indication that these results are
qualitatively correct, a detailed calculation of the effects of
an accelerated cavity still remains to be done.

We have calculated the entanglement between two free
modes of a scalar field as seen by an inertial observer
detecting one of the modes and a uniformly accelerated
observer detecting the second mode. The entanglement
which appeared to be maximal in an inertial frame is
then degraded by the Unruh effect. In the limit of infinite
acceleration, which can be applied to the situation of one of
the observers falling into a black hole while the other
barely escapes, the distillable entanglement vanishes but
the state remains correlated through classical correlations
and bound entanglement. The entanglement degradation
between the bosons is due to the increase of entanglement
with the modes in the causally disconnected Rindler re-
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gion. The accelerated observer has only partial access to
the information and therefore entanglement appears de-
graded. Similar effects have been noted to have relevance
for black hole entropy bounds [15]. A well-defined notion
of entanglement in flat space-time can be provided by
restricting attention to inertial observers. In curved space-
time, however, the notion of entanglement can be expected
to become a rather subtle one, as does the notion of
particles.
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