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An upper bound is derived for A for a cold dilute fluid of equal amounts of two species of fermion in the
unitary limit k@ — oo (where k is the Fermi momentum, a is the scattering length, and A is a pairing
energy: the difference in energy per particle between adding to the system a macroscopic number (but
infinitesimal fraction) of particles of one species compared to adding equal numbers of both. The bound is
5= %[2(25)2/5 — (2¢)] where ¢ = €/epg, 6 = 2A/epg; € is the energy per particle and €gg is the energy
per particle of a noninteracting Fermi gas. If the bound is saturated, then systems with unequal densities of
the two species will separate spatially into a superfluid phase with equal numbers of the two species and a
normal phase with the excess. If the bound is not saturated, then A is the usual superfluid gap. If the
superfluid gap exceeds the maximum allowed by the inequality, phase separation occurs.
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During the past several years there has been consider-
able theoretical interest in studies of cold, dilute, Fermi
systems with equal densities of two strongly coupled spe-
cies [1-10]. In this context, “species’ refers both to spin
states and to internal quantum numbers. There is an ideal-
ized version of this problem in which the following con-
ditions are met: the particles of each species are of equal
mass, and 1/a < n'/? < 1/ry and T < n'/3 where r, is
the typical distance scale of the interaction, a is the scat-
tering length for free particle scattering between the two
species, n is the density of each species, T is the tempera-
ture, and units have been chosen with 2 = 1. In the extreme
limit of this situation where n'/3a — 0o, Aag — oo,
n'3/A—0, and Tn='*— 0 (where A is the typical
momentum scale characterizing the interaction), there is
only a single momentum scale in the problem, namely,
n'/3. This is sometimes called the unitary regime. It is
convenient to reexpress this in terms of a nominal Fermi
momentum k; = (6772n)!/3. Thus all physical observables
in the problem can be expressed as appropriate powers of
this scale times appropriate constants. For example, the

average energy per particle can be written as € = f% X

K2 . . .
5= E€pg where ¢ is a universal constant (epg is the

energy density on a noninteracting Fermi gas). A pairing
energy parameter that gives the difference in energy per
particle between adding a macroscopic number (but infini-
tesimal fraction) of particles of one species as compared to
adding equal numbers of both to the system with equal

particle numbers can similarly by given as 2A = 5% X

2
2% = Jepg. The connection between A and the usual
superfluid gap is somewhat subtle and is discussed below.

This problem is of interest in part due to the universality
of the behavior. The coefficients such as & and 6 apply to
all problems in this regime regardless of the microscopic

details of the problem. The problem also is of theoretical
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interest in that it represents the exact intermediate limit
between two weakly coupled regimes with |kya| << 1. The
true weak-coupling regime between fermions has kra <0
and is a BCS superfluid; the regime with kra small and
positive corresponds to weakly coupled molecules in a
Bose-Einstein condensate (BEC) [11]. The problem is
also challenging: there appears to be no simple analytical
method to compute the universal coefficients.

The problem is relevant to physical systems of interest.
In nuclear physics the problem of low density neutron
matter can be caricatured by such a system: the two species
are the two spin states of the neutron; the s-wave scattering
length between spin up and spin down neutrons is much
larger than the characteristic range of the nucleon-nucleon
force [3,12,13]. The problem has become of importance at
the interface between atomic and condensed matter physics
since the scattering length between atoms, in particular m
states, can be tuned via altering an external magnetic field.
The scattering length diverges at a Feshbach resonance.
There has been intense experimental work on pairing in
fluids of trapped fermionic atoms and the transition from
the BCS to the BEC regime [14]. Of course, the trap itself
can play an important dynamical role in the problem and
significant theoretical effort has gone into describing the
role of the trap, which adds a spatial dependence to the
problem [15]. This Letter focuses on the ideal case where
the particles are visualized as being contained in a large
box.

The fact that no direct analytical computations of the
relevant dimensionless parameters exists means other
methods must be found to learn something about these
dimensionless parameters. One strategy is to attempt to
extract them numerically [5—8]. A possible difficulty with
such an approach is that a priori estimates of the errors
may be difficult to obtain in a reliable way. Thus, a con-
straint based on reliable analytical methods is potentially
quite useful. One possible idea is to see whether the
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coefficients ¢ and 6 can be related to each other analyti-
cally. This is also a formidable challenge for which no
rigorous answer is known. However, as is discussed in this
Letter, it is possible to give a rigorous upper bound on & for
any assumed value for ¢:

8 =3[2(26)*° - (28)] (1)

As is discussed below, A need not be the superfluid gap,
and the superfluid gap can exceed this bound; if it does, one
predicts an interesting phenomenon in the case where the
densities of the two species are unequal.

To derive this bound, consider a generalization of the
problem to the case where the two species (denoted a and
b) have different numbers of densities: the only relevant
quantities with dimensions of inverse lengths nl/3 are ni/ 3,
One completely general way to parametrize the ground
state energy density of this system subject to the constraint
of fixed density of the two species consistent with the
correct dimensional scaling is

& (ng, ny) = ani f(n,/n,), )

where f is a universal function that depends only on the
ratio of the number densities and « is a constant with
dimension of mass~!. At the point n, = 0, the system is
a noninteracting Fermi gas of species a (by hypothesis the
only relevant interactions are for species a and b to interact
with each other). Without loss of generality one can fix
f(0) to be unity, and this in turn fixes « to its Fermi gas
value. The parametrization in Eq. (2) is very natural if one
envisions starting with a Fermi gas of species a and slowly
adding in particles of species b. Comparing Eq. (2) with
the definition of &, one sees that £ = f(1)/2. The factor of
1/2 in this relation reflects the fact that at x = 1 the two
species contribute equally; where the noninteracting
f(1) = 2 and ¢ is defined as the fraction relative to the
noninteracting case.

The key thermodynamic consideration to derive a bound
is the possibility of phase separation. This constrains the
energy density as a function of the densities. In particular,
if we consider the energy density £(n,, n;,) at two different

pairs of number densities for the two species, (ngl), nb))

and (n&z), n, )) then the average of the energy densities at
these two number densities cannot exceed the energy

density at the average number density:

)

(1 2 1 2
5(}’1511), nh)) + S( 22), nh ) na) + ng) ( ) + I’l( )
2 2 ’ 2
(3

if Eq. (3) were false, it would be possible for a system with
a fixed but large volume and number densities

M4 ,0 04,
(” AL w) to lower its energy by dividing the volume

1nto two equal regions with different phases: one w1th
number densities (nﬁ,l), n, )) and the other with (n(az), n, ))

Equation (3) implies that in regions where E(n,, n;) is
continuous its curvature in any direction in the n,, n, plane
is positive:

9%E
iz = 0 )
n;, E)nj

for all unit vectors 72 where i, j can assume the value of a or
b and summation of over i and j is implicit.
In order for Eq. (4) to hold for any unit vector 7, the

matrix
az.§ &
— ang an,on
K(I’la, I’lb) = 92E 32517 (5)

an,on, on;

must have only non-negative eigenvalues; thus det(K) =
0. Inserting the parametrization of Eq. (2) into the defini-
tion of K and imposing a positive determinant yields a
constraint on the curvature of the function f

2f"(x)
5fx)

We know f(0) = 1 and f(1) = 2¢ and that f continu-
ously connects these with its curvature constrained by
Eq. (6). Consider the curve that obeys these boundary

conditions and saturates inequality (6) at all points in
between. Define that curve as f,,:

2f 1/11ax (x)
5 F max ()

f(x) = (6)

max( ) - where fmax(l) = 25?

with  fi.(0) = 1. ()

The differential equation in Eq. (7) can easily be solved
subject to the boundary conditions. There is only one real
solution:

Fmax®) = {1 + [(28)° = 1]x}*/3. (8)

The differential equation for f,,,, was derived by con-
sidering a path associated with varying the densities n, and
n,, which always is in the direction where the second
derivative of £ is zero: thus the derivatives of £ with respect
to n, (or n,) (i.e., the chemical potentials) are constants
along the path. Therefore f,,, represents a situation in
which the system for x =0 and 1 and at all points in
between are at the same chemical potential (but different
total density). This is precisely the condition for phase
separation: at 0 < x <1 a fraction r of the particles is in
the superfluid phase with a density of n, and a fraction 1 —
r is in the normal phase with a density n,. It is a simple
exercise of matching chemical potentials and densities to
show that in such a phase separated system

ny = n {1 + 2265 — 11}, ng =

- x(2¢)%3
T+ - 17

M
283
©)
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where n, is the average density of type a over the entire
system. Note that Egs. (8) and (9) can also be derived by
assuming at the outset two phases and then varying their
densities and fractions subject to the constraints of fixed
average density and fixed ratio of the total number of the
two species.

The phase separated configuration with fixed x and n,
has a known energy. The actual minimum energy configu-
ration is either this energy or below it so f,,, serves as an
upper bound for f:

J() = finax(0); (10)

a homogeneous phase violating this condition is energeti-
cally unstable against phase separation, and thus the
ground state is phase separated; the upper bound is satu-
rated if phase separation occurs.

2A =

It is worth observing that the preceding analysis is valid
only for n,/n, = 1. However, the regime x > 1 can easily
be studied as it corresponds to more of species b than a. For
n, > n, one can use the previous analysis with b and a
switched:

& (ng, ny) = andf(ny/ny) (11)

with f the same function as above.

One can determine A from f(x). For an ordinary super-
fluid A is the gap. The gap represents the amount of energy
saved by pairing: A is the difference in energy per particle
gained by adding particles of one species type (say, type a)
to a system of equal particle number as compared to the
energy of adding equal numbers of a or b:

where E(N,, N},) is the total energy and N, (N,,) is the total
number of particles of species a (b) and M <K N is the
number of particles of each type added. Going to the
thermodynamic limit gives A as the discontinuity of the
derivative of £ with respect to the density of one of the
species:

_ae

(nb=na+e¢) anb

). (13)
(nb=na—e)

Using the general parametrizations of £ of Egs. (2) and
(11) yields

20 = %g(z - 6@?)5 - g%(z
3 5

where the second form follows since § = A/(z 55).

Equation (14) provides the basis for inequality (1). Note
that f = f..x in the interval from zero to unity and that by
construction f(1) = fr.x(1). This is possible only if
F' (D) > fha(1). Thus, 8 = €7 — 2f}(1)/€]. Using
the explicit form of f,,, from Eq. (8) immediately yields
inequality (1).

The interpretation of inequality (1) is subtle. A is the
usual superfluid gap Agp in the case where the system does
not phase separate for unequal numbers (i.e., the inequality
is not saturated). If there is only one possible phase when
particles are added, then 2A must simply represent the
pairing energy for this phase. In the case where inequality
is saturated, however, this is not the case. Although A
retains the definition given above, it should not be inter-
preted as Agg; if a mixed phase is energetically preferred,
A represents the amount of energy per particle to add
particles of one species into a normal phase that forms in
equilibrium with the superfluid phase [16]. The distinction
is the following: Agg is the energy per particle to a single

67
) 09

_ [E(N +2M,N) — E(N, N)] — [E(N + M, N + M) — E(N, N)]
m ,

12)

[
particle to a system with equal numbers of the two species;

A represents the energy cost per particle when adding a
large number (but infinitesimal fraction) of particles of one
species. Clearly, Agr = A; either phase separation does not
happen and the two are equal or it does not and it is
energetically cheaper to add unpaired particles in a new
phase.

To summarize, inequality (1) always holds with A de-
fined as above. If, in addition, the system is known not to
phase separate at unequal particle numbers, then (i) the
inequality is not as such saturated and (ii) A = Agg.

An important corollary of this analysis is that if dgp >
%[2(25)2/5 — (2€)] (where 8gp is the analog of & for the
superfluid gap) phase separation must occur for x < 1 and
if 8sp < 3[2(2£)%5 — (2£)] then the type of phase separa-
tion considered here (into fully paired and fully unpaired
phases) does not occur.

Given one nontrivial physical assumption, it is possible
to make a much stronger connection between ¢ and 6 than
inequality (1). The dynamical assumption is that for n, #
n,, the system does separate spatially into two phases: a
superfluid phase (which prefers to have equal numbers of
the two species) and a normal phase with the remainder.
This possibility was explored in an intriguing recent paper
by Bedaque, Caldas, and Rupak (BCR) [17]. The BCR
paper argued on the basis of a generalized BCS ansatz that
such phase separation occurs. The analysis of BCR was
aimed at a broader class of problems than the strongly
coupled limit of kra > 1; indeed, the detailed analysis is
only strictly legitimate in the case of small BCS gaps and
hence weak coupling. Thus, it is an open question as to
whether such phase separation occurs at strong coupling
and asymmetric systems. However, BCR argued that it was
plausible that their conclusion holds even away from the
weak-coupling limit.
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Note that if there is phase separation as suggested by
BCR, the inequalities in (1) and (10) must be saturated.
Since the chemical potentials for both species are constant
at all points along the path, a region with n;, = 0 is in
chemical equilibrium a region with n;, = n,; this is neces-
sary and sufficient for phase separation of the BCR type.
Thus, the BCR assumption implies that for 0 > x> 1,
F(x) ={1 + [(2¢6)3/5 — 1]x}*/3 and thus

5 = 3220 - 28))

Clearly it is important to establish whether phase sepa-
ration occurs for x # 1. As discussed above, this can be
immediately answered if one knows ¢ and O (the analog
of 6 for the superfluid gap). Estimates of ¢ and dgr have
been obtained numerically using Monte Carlo methods for
finite but large systems [5—8]. The most recent extracted
value [7] of £ is approximately 0.42 = 0.01, which implies
that the dividing line between whether phase separation
occurs or not is approximately &g = 1.70 with fairly
small numerical uncertainty. The extracted value for dgp
is 1.68 = 0.1. Unfortunately this is not accurate enough to
determine whether phase separation occurs. The numerical
simulations in Ref. [7] for x < 1, are energetically consis-
tent with phase separation. The present analysis implies
that if these numerical simulations are reliable, then either
Ssr does exceed 3[2(2€)*° — (2£)] (presumably by a
small amount) or phase separation does not occur for x <
1 with the energy just slightly below the phase separated
energy. Thus, the analysis here provides a highly nontrivial
constraint on the numerics. Finally, it is worth noting that it
is surprising just how close dgf is to the critical value for
phase separation: present numerical simulations do not rule
out the intriguing possibility that they are exactly equal.
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