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Virial Theorem and Universality in a Unitary Fermi Gas
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Unitary Fermi gases, where the scattering length is large compared to the interparticle spacing, can have
universal properties, which are independent of the details of the interparticle interactions when the range
of the scattering potential is negligible. We prepare an optically trapped, unitary Fermi gas of 6Li, tuned
just above the center of a broad Feshbach resonance. In agreement with the universal hypothesis, we
observe that this strongly interacting many-body system obeys the virial theorem for an ideal gas over a
wide range of temperatures. Based on this result, we suggest a simple volume thermometry method for
unitary gases. We also show that the observed breathing mode frequency, which is close to the unitary
hydrodynamic value over a wide range of temperature, is consistent with a universal hydrodynamic gas
with nearly isentropic dynamics.
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Universal behavior is believed to approximately de-
scribe a variety of strongly interacting Fermi systems,
such as neutron stars [1–4] and resonantly interacting
atomic Fermi gases [1]. Universal Fermi systems satisfy
the unitary condition, where the zero-energy scattering
length greatly exceeds the interparticle spacing, while the
range of the scattering potential is negligible. Unitary
conditions are produced in an optically trapped Fermi gas
[5], by using a magnetic field to tune near a broad Feshbach
resonance, where strong interactions are observed [6].
According to the universal hypothesis, the interparticle
spacing sets the only natural length scale, and the system
can exhibit universal thermodynamics [1,3,4,6–9]. If uni-
tary Fermi gases satisfy this hypothesis, they can be used to
test predictions in fields well outside of atomic physics.

Universality at low temperature has been tested in mea-
surements of two-component, strongly interacting Fermi
gases. The ratio, �, of the interaction energy to the local
Fermi energy has been measured [6,10–13] and is believed
to be a zero-temperature, universal parameter [1]. The
measurements are in reasonable agreement with recent
predictions [14,15]. Universality also may explain the
small line shifts observed in radio-frequency spectroscopy
measurements [16]. Universality at low temperature is
further supported by the spatial profile [6,12,13] and
breathing mode frequency [17–19] of a trapped, highly
degenerate, unitary Fermi gas. However, for a Fermi gas
tuned to a broad Feshbach resonance, there have been no
model-independent tests of the universal hypothesis over a
wide temperature range, and these tests impact all theo-
retical predictions of the thermodynamics.

In this Letter, we show theoretically and experimentally
that a harmonically trapped, unitary 6Li Fermi gas obeys
the virial theorem for an ideal gas over a wide range of
temperature, as predicted by universal thermodynamics.
Although the gas is a strongly interacting, many-body
system, we find that the mean square width of the cloud
varies linearly with the total energy, as predicted by the
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virial theorem. We also show that universal hydrodynam-
ics, under isentropic conditions, may describe the behavior
of the observed breathing mode frequency [19], which is
near the zero-temperature unitary hydrodynamic value
over a wide range of temperatures, and has no mean field
shift.

We test the universal hypothesis in a highly degenerate,
unitary Fermi gas of 6Li, confined in a CO2 laser trap. This
far-detuned trap provides a nearly harmonic potential,
which is the same for all atoms, both paired and unpaired.
We employ a 50:50 mixture of the two lowest spin-up and
spin-down hyperfine states, and tune a bias magnetic field
to 840 G, just above the center of a broad s-wave Feshbach
resonance. Forced evaporation in the optical trap is then
used to cool the gas, as described previously [6,13,17–19].
After evaporation, we obtain a total of N � 2:0�0:2� � 105

atoms, and the cloud has a nearly zero-temperature
Thomas-Fermi profile, as expected for a unitary gas at
zero temperature [13].

From the measured trap frequencies we obtain !? �������������!x!y
p

� 2�� 1696�10� Hz, !x=!y � 1:107�0:004�,
and � � !z=!? � 0:045. The typical Fermi temperature
(at the trap center for a noninteracting gas) is TF �

�3N�1=3
@�!x!y!z�

1=3=kB ’ 2:4 �K, small compared to
the final trap depth of U0=kB � 35 �K. The coupling
parameter of the strongly interacting gas at B � 840 G is
kFa ’ �30:0, where @kF �

�����������������
2mkBTF

p
is the Fermi mo-

mentum, and a � a�B� is the zero-energy scattering length
estimated from the measurements of Bartenstein et al. [20].

We now show that universality requires such a strongly
interacting, unitary Fermi gas to obey the virial theorem for
a harmonically trapped ideal gas at all temperatures.
According to the universal hypothesis, the thermodynamic
functions that describe the gas must be independent of the
interaction parameters and can depend only on the total
density n and temperature T [8].

Consider first the local energy �E (kinetic and interac-
tion energy) contained in a small volume �V of gas
2-1 © 2005 The American Physical Society
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FIG. 1. Verifying the virial theorem in a unitary Fermi gas of
6Li: hx2i=hx2�0�i versus E=E0 showing linear scaling. Here hx2i
is the measured transverse mean square size. E is the total
energy, calculated as in Ref. [13]. E0 and hx2�0�i denote ground
state values.
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centered at position x in a harmonic trap. Assume that the
volume �V contains a fixed number of atoms �N, so that
n � �N=�V, where

R
d3xn�x� � N is the total number of

trapped atoms.
For such a unitary gas, the local energy must be of the

general form,

�E � �N�F�n�fE

�
T

TF�n�

�
: (1)

Here, the natural energy scale for atoms of massm is taken
to be kBTF�n� � �F�n� with �F�n� � @2�3�2n�2=3=�2m�.
With this definition, �F�n� is the local Fermi energy corre-
sponding to the density n and TF�n� is the corresponding
local Fermi temperature. Note that for a zero-temperature
ideal Fermi gas, we have fE � 3=5, for a zero-temperature
unitary gas fE � 3�1� ��=5, while for a classical gas,
fE � �3=2�T=TF�n�.

The corresponding local entropy �S takes the form

�S � �NkBfS

�
T

TF�n�

�
; (2)

where kBfS is the average entropy per particle, which can
contain normal and superfluid contributions.

The local pressure of the gas is readily determined from
the relation P � ��@��E�=@��V�	�N;�S. From Eq. (2), we
see that holding the local entropy constant requires fS �
const, which in turn means that we hold the local reduced
temperature constant in taking the derivative of �E with
respect to volume �V. Hence, we need only to find the
volume derivative of the local Fermi energy, which yields
the local pressure,

P �
2

3
E�n; T�; (3)

where the local energy density (total kinetic plus inter-
action energy per unit volume) is E�n; T� � n�F�n� �
fE�T=TF�n�	. Equation (3) relates the pressure and local
energy density for the unitary gas in the same way as for an
ideal, noninteracting homogeneous gas, although the en-
ergy densities are quite different. Equation (3) for a unitary
gas was obtained previously in Ref. [8].

In mechanical equilibrium, the balance of the forces
arising from the pressure P and trapping potential U yields

rP�x� � n�x�rU�x� � 0: (4)

Taking an inner product of Eq. (4) with x and using
x 
 rU�x� � 2U�x� for a harmonic trap, one readily
obtains NhUi � �3=2�

R
d3xP�x�, where hUi is the aver-

age potential energy per particle. Using
R
d3xE�x� � E�

NhUi and Eq. (3) then yields

NhUi �
E
2
: (5)

Hence, universality requires a unitary Fermi gas to obey
the virial theorem for an ideal gas. Since the mean square
size is / hUi, Eq. (5) is equivalent to
12040
hx2�E�i

hx2�E0�i
�
E
E0
; (6)

which we use to verify the theorem. Here E0 is the ground
state energy of the cloud.

Energy is first added to gas, always starting from the
lowest temperatures, by abruptly releasing the cloud and
then recapturing it after a short expansion time theat [13].
During the expansion time, the total kinetic and interaction
energy is conserved. When the trapping potential U�x� is
reinstated, the potential energy of the expanded gas is
larger than that of the initially trapped gas, increasing the
total energy to E�theat�, which is a known function of theat

[13]. After waiting for the cloud to reach equilibrium, the
sample is released from the trap. The mean square width
hx2i is estimated by fitting a one-dimensional, finite-
temperature, Thomas-Fermi profile to the spatial distribu-
tion of the cloud [13], which is imaged after a fixed
expansion time of 1 ms.

Figure 1 shows hx2i as a function E. The dashed line
shows the fit, hx2i=hx2�0�i � 1:03�0:02�E=E0, which is in
close agreement with the virial theorem prediction of
Eq. (6) for a unitary gas. Equation (5) is therefore verified
because NhU�T � 0�i � E0=2, which follows generally
from the equation of state for a unitary gas at zero tem-
perature [6,10,13]. The Fermi radius �0x of the trapped
unitary cloud is measured from a fit at nearly zero tem-
perature [13], and determines hx2�T � 0�i � �02x =8 as well
as E0=N � 3m!2

xhx2�T � 0�i.
From these results, we see that despite the strong, many-

body interactions, the total potential energy of the unitary
2-2
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gas is half of the total energy. Hence, the sum of the kinetic
and interaction energies must be exactly half of the total
energy at all temperatures.

We suggest that an empirical thermometry method can
be based on the virial theorem result for a unitary Fermi
gas. One can simply measure hx2i for a unitary gas near a
broad Feshbach resonance. This determines the total en-
ergy according to Eq. (6), i.e., since E=N � 3m!2

xhx
2i.

Universality then requires that E=E0 is in one-to-one cor-
respondence with the reduced temperature, T=TF.

An approximate empirical reduced temperature can be
determined by assuming that E=E0 obeys ideal gas scaling
with reduced temperature. At a later time, the empirical
temperature can be calibrated, either theoretically or
experimentally.

A theoretical calibration, relating the empirical and
theoretical reduced temperatures, can be accomplished
using an exact calculation of E�T=TF�=E0 for a unitary
gas. While this calibration method is not useful for mea-
surements of the energy versus temperature (where it is a
tautology), it can be used to estimate temperature for
precise quantitative comparisons between predictions and
measurements of condensed pair fractions [21,22], the gap
[23], collective mode damping rates [17,19], etc.

An experimental consistency check of the calibration
can be done by measuring the total entropy of the unitary
gas versus energy, S�E�. E is known from hx2i. S can be
determined, albeit in a model-dependent way at present
[13,24], using an adiabatic sweep of the magnetic field [24]
from the unitary regime to a weakly interacting regime
either well below [22,23] or well above resonance [21],
where S is calculated [13,24]. Then, the fundamental rela-
tion, 1=T � �@S=@E�, yields the temperature of the unitary
gas for a given E, which can be compared to the empirical
temperature measured at the corresponding E.

We now consider the implications of universal hydro-
dynamics under isentropic expansion conditions, which
may apply to the radial breathing mode of a unitary
Fermi gas [19]. We find that the damping rate reveals a
transition in behavior, while the frequency remains close to
the zero-temperature unitary hydrodynamic value over a
wide range of temperature [19].

Under locally isentropic conditions, the stream veloc-
ities of the normal and superfluid components must be
equal (since the entropy per particle is different for the
superfluid and normal components). Then, we can assume
that the total density n�x; t� and the stream velocity u�x; t�
obey a simple hydrodynamic equation of motion. The
convective derivative of the stream velocity u is the local
acceleration, which depends on the forces arising from the
local pressure P and the trap potential U. For irrotational
flow, r� u � 0, we have u 
 ru � r�u2=2�. Then,

m
@u
@t
� �r

�
m
2

u2 �U
�
�
rP
n
; (7)

where m is the atom mass [25].
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For a unitary Fermi gas, the local pressure, Eq. (3) takes
the general form P�n; T� � n5=3fP�T=TF�n�	.

Initially, the gas is contained in a harmonic trap at a
uniform temperature T0 and has a density n0 � n0�~x�,
where ~x is the position in the initial distribution. The initial
pressure P0�~x� � n5=3

0 fP�T0=TF�n0�	. Force balance,
Eq. (4), requires r~xP0�~x�=n0 � �r~xU�~x�.

The hydrodynamic equation of motion can be solved by
assuming a scaling ansatz [26,27], where each dimension
changes by a scale factor bi�t�, i � x; y; z, and bi�0� � 1.
The density and stream velocity then take the forms
n�x; t� � n0�~x�=� and ux � x _bx�t�=bx�t� and similarly
for uy; uz. Here ~x � �x=bx; y=by; z=bz� is the position at
time t � 0 for an atom that is at position x at time t and
� � bxbybz is the volume scale factor. The scaling ansatz
is exact if the gas is contained in a harmonic trap and the
pressure takes the form P � cn�, where c and � are
constants [26,27].

At nonzero temperature, the pressure does not, in gen-
eral, obey such a simple power law, as the function fP
can be dependent on T=TF�n� in a complicated way. How-
ever, for a gas expanding under isentropic conditions,
an exact scaling solution can be obtained, and it predicts
temperature-independent expansion. The results corre-
spond closely with our measurements, where nearly
temperature-independent breathing frequencies are ob-
served, as we now show.

If the gas is locally isentropic, according to Eq. (2), the
local reduced temperature does not change as the gas
expands, i.e., T�x�=TF�n�x�	 � T0=TF�n0�~x�	. Using n �
n0=� then requires T�x� � T0=�2=3. If local equilibrium is
maintained, the pressure P is then simply related to P0.
Using fP�T=TF�n�x�		 � fP�T0=TF�n0�~x�		 we must have
P�x� � P0�~x�=�5=3. Then with x � bx~x and r~x ! rx in
Eq. (4) for P0�~x�, we obtain rP�x�=n�x���rU�~x�=�2=3.
Using this result in Eq. (7) yields

m
@u
@t
� �r

�
m
2

u2 �U�x� �
U�~x�

�2=3

�
; (8)

whereU�x� is the trapping potential whileU�~x� arises from
the pressure force, which is evaluated at ~x � x=bx�t� and
similarly for ~y; ~z. Equation (8) can be obtained for a
strongly collisional gas by using a phase-space scaling
ansatz [28].

We see that under isentropic conditions, the gas obeys
the same hydrodynamic equation at all temperatures as for
a zero-temperature gas, where P � cn5=3 and c is a con-
stant, even though the pressure and density may assume a
more complicated form. For a harmonic potential, all terms
in Eq. (8) are linear in x and the scaling solution is exact
[26]. Hence, after release from a harmonic trap, where
U�x� ! 0 in Eq. (8), the cloud expands precisely by a
scale transformation at all temperatures, similar to that
observed in our previous measurements for a strongly
interacting Fermi gas at very low temperature [6].
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FIG. 2. Radial breathing frequency !=!? versus empirical
temperature ~T for a unitary gas of 6Li from Ref. [19], showing
small variation. Open circles: Measured frequencies. Solid dots:
Data after correction for anharmonicity. Lower dot-dashed line:
Unitary hydrodynamic frequency, !=!? � 1:84. Upper dashed
line: Noninteracting gas frequency 2!x=!? � 2:10.
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The breathing frequencies are readily obtained using
bi � 1� �i, where �i � 1. For the radial mode in a cylin-
drically symmetrical trap, i.e., with !x � !y � !? �

!z, one obtains ! �
�����������
10=3

p
!? � 1:83!?. However, for

our trap conditions, the exact result is ! � 1:84!?, inde-
pendent of the mean field and superfluid contributions that
are included in the general form of the energy density.

Figure 2 shows the measured breathing mode frequen-
cies as a function of empirical temperature ~T, 0:11 
 ~T 

1:54. Here, ~T is determined from the measured spatial
profiles as in Ref. [13] and can be calibrated to the theo-
retical profiles [13], which show that the corresponding
T=TF varies from 0.12 to 1.1. After correction for anhar-
monicity, the frequency is close to the universal hydro-
dynamic value over the range of temperatures studied.
These results are consistent with nearly isentropic condi-
tions at the highest temperatures, although the system is
likely to be changing from a superfluid to a unitary colli-
sional fluid, as suggested by the transition in the damping
rate [19]. The observed hydrodynamic behavior at higher
temperatures is not explained by existing theories. In par-
ticular, the momentum relaxation rate predicted in two-
body collision models is much too small to explain the
observed hydrodynamic behavior [29].
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