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We study theoretically the ultracold two-component fermionic gases when a gradient magnetic field is
used to tune the scattering length between atoms. For 6Li at the narrow resonance B0 � 543:25 G, it is
shown that the gases would be in a coexistence of the regimes of BCS, Bose-Einstein condensation (BEC),
and unitarity limit with the present experimental technique. In the case of thermal and chemical
equilibrium, we investigate the density distribution of the gases and show that a double peak of the
density distribution can give us a clear evidence for the coexistence of BCS, BEC, and unitarity limit.
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With the remarkable development of the cooling tech-
nique for two-component Fermi gases and Feshbach reso-
nance, the recent experiments [1–3] have finally realized
molecular Bose-Einstein condensation (BEC), and the con-
densation of fermionic atom pairs on the side of attractive
interaction has also been investigated by several experi-
ments [4–11]. Together with intensive theoretical inves-
tigations [12–31] such as resonance superfluid [16,17]
and universal behavior for the gases with divergent scat-
tering length [25–30], these experimental advances pro-
vide quite a unique system which will even contribute
largely to our understanding on the mechanism of high-
temperature superconductors.

For two-component Fermi gases, when the magnetic
field is tuned so that the energy of a quasibound molecular
state in a closed channel matches the total energy in an
open channel, there is a magnetic-field Feshbach resonance
[25,32] which can tune the scattering length from positive
to negative over many orders of magnitude. On the side of
repulsive interaction (BEC side), there exists a molecule
which is a short-range fermionic atom pairs. On the side of
attractive interaction (BCS side), there would be a super-
fluid behavior due to the atomic Cooper pairs at sufficient
low temperature. On resonance, the absolute value of the
scattering length is much larger than the average distance
between atoms and one expects a universal behavior for the
system in the unitarity limit. In the present experiments on
the BCS-BEC crossover, a uniform magnetic field is used
to tune the scattering length through the magnetic-field
Feshbach resonance. By tuning the uniform magnetic field
near the resonant magnetic field, several experiments have
investigated the BCS-BEC crossover such as condensate
fraction [4,5], collective excitation [8,9], pairing gap [10],
and heat capacity [11].
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For ultracold two-component Fermi gases confined in an
optical trap with axial symmetry along the z axis, in the
present work we investigate the unique property of the
system when the magnetic field to tune the scattering
length has a gradient of �. For 6Li at the narrow resonance
B0 � 543:25 G, our research shows that the gases can be in
a coexistence of the regimes of BCS, BEC, and unitarity
limit with appropriate parameters. For the gases in thermal
and chemical equilibrium, when the pair size is much
smaller than the cloud size of the system, the density
distribution of the gases is calculated based on the local
density approximation.

For Fermi gases with an equal incoherent mixture of the
internal states j1i and j2i, near a Feshbach resonant mag-
netic field B0, the scattering length is a�B� � Aa0�1�
w=�B� B0�� with a0 being the Bohr radius. For the mag-
netic field in x direction with gradient � along z direction,
we have ~B � �B0 � �z� ~ex. In this case, the scattering
length becomes z dependent and takes the following form:

a�z� � Aa0

�
1�

w
�z

�
: (1)

If the magnetic-field gradient � is positive, when z < 0 and
a�z�n1=3 < 1 (n is the total density distribution of the ultra-
cold gases), there is repulsive interaction between fermi-
onic atoms which corresponds to the BEC side, while when
z > 0 and ja�z�jn1=3 < 1 there is attractive interaction be-
tween fermionic atoms which corresponds to the BCS side.
In the regime determined by ja�z�jn1=3 > 1, the ultracold
gases are in the unitarity limit where the scattering length
can be regarded to be divergent and will not appear in the
final result of a physical quantity such as chemical poten-
tial. Thus, by using the gradient magnetic field and appro-
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priate parameters, there would be a coexistence of the
gases in the form of BCS, BEC, and unitarity limit.

For the optical trap with angular frequencies being
!r�� !x � !y� and !z in the radial and axial directions,
when the magnetic field with gradient � is applied to the
ultracold gases, the overall external potential for the fer-
mionic atom in the internal state jii is

Vjii �
1

2
m!2

r�x2 � y2� �
1

2
m!2

z�z��zjii�2 ��
mag
jii B0

��Vjii; (2)

where i � 1; 2. Because of the presence of the magnetic
field, for different internal state jii, there is a different
shift to the optical trap which is determined by �zjii �
��mag

jii =m!
2
z with �mag

jii being the magnetic moment of
the internal state jii. In the above expression, �Vjii �
��2��mag

jii �
2=2m!2

z . One can also get the overall external
potential for a molecule

Vmol � m!2
r�x2 � y2� �m!2

zz2 ��mag
m B; (3)

where �mag
m is the magnetic moment of the molecule.

The regime of the gases in the unitarity limit can be
roughly determined by ja�z�jn1=3 > 1. Thus, the length
scale for the regime in the unitarity limit can be esti-
mated as 2lres

z with lres
z � Awn1=3a0=�. Because there is

a different shift for the external potential of the inter-
nal state j1i and j2i, the difference of the shift should be
much smaller than 2lres

z so that one can omit safely the
effect of the shift �zjii. After a simple calculation, this
condition j�zj1i ��zj2ij � 2lres

z means that

Aw�
2�lres

z �
2m!2

z

n1=3a0j�
mag
j1i ��

mag
j2i j

: (4)

For the typical parameters that !z=2�	 100 Hz, n	
1013 cm�3, and lres

z 	 10 �m, the condition given by
Eq. (4) requests that Aw is smaller than 10 G. This means
that very narrow resonance for an element is an appropriate
choice to investigate the coexistence of the regimes of
BCS, BEC, and unitarity limit. A careful investigation
shows that the mixture of j1i 
 jF � 1=2, mF � 1=2i
and j2i 
 jF � 1=2, mF � �1=2i for 6Li at the narrow
resonance located at B0 � 543:25 G [33] can satisfy our
request. For this narrow resonance, Aw is estimated as 6 G
[33]. Thus, in the present work, we will consider two-
component Fermi gases of 6Li at the narrow resonance
B0 � 543:25 G.

For two-component Fermi gases of 6Li confined in the
optical trap, we will investigate the density distribution of
the gases by using the condition that the system is in
thermal and chemical equilibrium. Our research shows
that with an appropriate choice of parameters and elements
for the system, the coexistence of the gases in the form
of BCS, BEC, and unitarity limit can be clearly shown
12040
through the density distribution. In the present experi-
ments, the gases can be cooled far below the critical
temperature of molecular BEC and Fermi temperature of
the Fermi gases. Thus, we will consider the system at zero
temperature to give a clear presentation. For the molecules
on the BEC side, the pair size can be regarded as the
scattering length. For the atomic pairs in the unitarity limit,
the pair size can be estimated as the average distance
between atoms [34]. For the atomic Cooper pairs on the
BCS side, one can estimate the pair size based on the BCS
theory. We have verified that for the parameters used in the
present work, the pair size is much smaller than the cloud
size. Thus, one can safely use the well-known local density
approximation to calculate the density distribution of the
system.

To calculate the density distribution of the system, we
first investigate the chemical potential of the system. In the
regime of molecular BEC �a�z�n1=3 < 1� with density dis-
tribution nBEC

m and molecular scattering length am � 0:6a
[35], the chemical potential of the molecular BEC is given
by

�BEC
m �

2�@2amnBEC
m

m
� Vmol ���B0; (5)

where �� � �mag
m �

P
i�

mag
jii . The last term ��B0 in the

above equation is due to the energy of the bound state in the
closed channel when there is no magnetic field. After a
simple calculation, one can get the following expression
for the chemical potential

�BEC
m �

2�@2amnBEC
m

m
� V 0mol � "m; (6)

where "m � �Em with Em � @2=ma2 being the binding
energy of the molecule. V 0mol is given by

V0mol � m!2
r�x2 � y2� �m!2

z�z� �zmol�
2 �

X
i

�mag
jii B0

� �Vmol; (7)

where �zmol � ��
P
i�

mag
jii �=2m!2

z and �Vmol �

��2�
P
i�

mag
jii �

2=4m!2
z .

In this regime, the chemical potential of the Fermi gas in
the internal state jii takes the form

�BEC
fjii �

@
2�6�2�2=3

2m
�nBEC
fjii �

2=3�gaan
BEC
fjii �gamn

BEC
m �Vjii;

(8)

where nBEC
fjii is the density distribution of the Fermi gas

in the internal state jii. In the above expression gaa �
2�@2a=mr with mr � m=2 being the reduced mass. In
addition, gam � 0:9gaa [36] which is obtained based on
the atom-molecule scattering length aam � 1:2a [35].

In the regime of the unitarity limit where the absolute
value of the scattering length is much larger than the
average distance between atoms, as pointed out in [30],
1-2
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FIG. 1. Shown is the density distribution of the gases when a
gradient magnetic field of 21 G=m is used to tune the atomic
scattering length. After the molecules in the regime of BEC, the
dimers in the regime of unitarity limit, and the atomic Cooper
pairs in the regime of BCS are converted into deeply bound
molecules by nonadiabatically decreasing the magnetic field, the
thick dashed line illustrates the density distribution of the deeply
bound molecules. We see that there is a double peak for the
density distribution of the deeply bound molecules which can
give us a clear evidence for an experiment to make the system in
the coexistence of BEC, BCS, and unitarity limit. The ratio of
the peak density to valley density is estimated as 1.4. In this
figure, the density distribution is in units of nUL

fj1i�z � 0�, while

the coordinate z is in units of Rz �
���������������������
�eff=m!

2
z

q
. In the inset of

this figure, the ratio R of the peak density due to molecular BEC
and ultracold gases in the unitarity limit for different magnetic-
field gradient is shown.
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we assume that the gases are in the mixture of Fermi gases
and dimeric gas in chemical equilibrium. Based on the
local density approximation at zero temperature, the
chemical potential of the Fermi gas with density distribu-
tion nUL

fjii takes the form

�UL
fjii � �1� �1�

@
2�6�2�2=3

2m
�nUL
fjii�

2=3 � Vjii; (9)

where �1 is first measured in [25] and �1 � �0:56 based
on a quantum Monte Carlo calculation [27]. Omitting the
binding energy of the dimer in the unitarity limit, based on
the dimensionality analysis, the chemical potential of the
dimeric gas with density distribution nUL

d can be assumed
as [30]

�UL
d � �1� �2�

@
2�6�2�2=3

2� 2m
�nUL
d �

2=3 � Vd: (10)

For the dimeric gas, Vd takes the same form as V0mol for the
molecular gas. Based on the condition of the chemical
equilibrium

P
i�

UL
fjii � �UL

d , one can get the ratio

nUL
d =nUL

fjii � �4�1� �1�=�1� �2��
3=2 on resonance. From

the experimental result nUL
d =nUL

fjii � 4 in [5], �2 is esti-
mated as �0:3.

In the regime of BCS, the chemical potential can be
approximated as

�BCS
fjii �

@
2�6�2�2=3

2m
�nBCS
fjii �

2=3 � Vjii; (11)

where nBCS
fjii is the density distribution of the fermionic

atoms on the BCS side.
In the case of thermal and chemical equilibrium for the

system, the minimum of the Gibbs free energy means that
there is following important relation for the chemical
potential:

�BEC
m �

X
i

�BEC
fjii �

X
i

�UL
fjii ��

UL
d �

X
i

�BCS
fjii 
�: (12)

To illustrate clearly the density distribution and evidence
for an experiment to show the coexistence of the regime
of BCS, BEC, and unitarity limit, we use the parame-
ters !z=2� � 120 Hz and nUL

fj1i � 0:2� 1012 cm�3 at
the center z � 0. In addition, the gradient of the magnetic
field is chosen as � � 21 G=m. Based on these parame-
ters, j�zjiij=2lres

z � 1, j�Vjiij=�� 1, �zmol � 0, and
�Vmol=� � 0. Thus, one can safely omit �zjii, �Vjii,
�zmol, and �Vmol.

From the equilibrium condition for the chemical poten-
tial given by Eq. (12), one gets the following expressions
for the density distribution:

nBEC
m �

��eff � @
2=ma2 � 2Vext�m

2�@2am
; (13)
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nBEC
fj1i � nBEC

fj2i �

�
2m��eff=2� Vext�

@
2�6�2�2=3

�
3=2
; (14)

nUL
fj1i � nUL

fj2i �

�
2m��eff=2� Vext�

�1� �1�@
2�6�2�2=3

�
3=2
; (15)

nUL
d �

�
4m��eff � 2Vext�

�1� �1�@
2�6�2�2=3

�
3=2
; (16)

nBCS
fj1i � nBCS

fj2i �

�
2m��eff=2� Vext�

@
2�6�2�2=3

�
3=2
; (17)

where Vext takes the form

Vext �
1

2
m!2

r�x2 � y2� �
1

2
m!2

zz2: (18)

To give a concise presentation, we have introduced

�eff � 2�1� �1�
@

2�6�2�2=3

2m
�nUL
fj1i�z � 0��2=3: (19)

Using the parameters in this Letter, Fig. 1 shows the
density distribution of the gases where the density is in
units of nUL

fj1i (z � 0), while the coordinate z is in units of
1-3
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Rz �
���������������������
�eff=m!2

z

q
. The arrow shows the location 0:7Rz

which is determined by ja�z�jn1=3 � 1. The solid line in
Fig. 1 shows the density distribution of molecular BEC
nBEC
m (z <�0:7), while the dot-dashed line in this figure

shows the density distribution nUL
d (�0:7< z< 0:7) of the

dimers in the unitarity limit. The dotted line shows the
density distribution of nBCS

fj1i (z > 0:7). Analogously to the
experiments in [4,5], we consider the process that the
magnetic field is decreased nonadiabatically so that the
fermionic atom pairs (i.e., molecules on the BEC side,
dimers in the unitarity limit, and atomic Cooper pairs on
the BCS side before the decreasing of the magnetic field)
are converted into deeply bound molecules. After this
nonadiabatical process, from the density distribution of
molecular BEC (solid line) and dimers in the unitarity limit
(dot-dashed line), we see that the coexistence of the gases
in the form of BCS, BEC, and unitarity limit can be clearly
shown through the double peaks in the density distribution
of the deeply bound molecules. The thick dashed line
shows a schematic interpolation of the density distribution
of the deeply bound molecules. The evidence for the
coexistence of the regimes of BCS, BEC, and unitarity
limit can be also shown through the nonsymmetric density
distribution of the deeply bound molecules about z � 0
after the nonadiabatic process. The inset in the figure
shows the ratio R between the peak density of the regime
of BEC and unitarity limit for different magnetic-field
gradients. Through the density distribution for different
magnetic-field gradients, our research shows that for
18 G=m<�< 22 G=m, there is obvious double peak
density distribution.

In summary, we show that for 6Li at the narrow reso-
nance B0 � 543:25 G, by using a gradient magnetic field
to change the scattering length, one can make the gases
become the coexistence of the regimes of BCS, BEC, and
unitarity limit. In the case of thermal and chemical equi-
librium, it is shown that with appropriate parameters there
is a double peak in the density distribution of the deeply
bound molecules after the nonadiabatic decreasing of the
magnetic field. This can give us a clear evidence for the
coexistence of the regimes of BCS, BEC, and unitarity
limit in an experiment.
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