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Intracellular Transport of Single-Headed Molecular Motors KIF1A
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Motivated by experiments on single-headed kinesin KIF1A, we develop a model of intracellular
transport by interacting molecular motors. It captures explicitly not only the effects of adenosine
triphosphate hydrolysis, but also the ratchet mechanism which drives individual motors. Our model
accounts for the experimentally observed single-molecule properties in the low-density limit and also
predicts a phase diagram that shows the influence of hydrolysis and Langmuir kinetics on the collective
spatiotemporal organization of the motors. Finally, we provide experimental evidence for the existence of
domain walls in our in vitro experiment with fluorescently labeled KIF1A.
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FIG. 1. The biochemical and mechanical states of a single
KIF1A motor. On the left of the dotted line, KIF1A is bound
to a fixed position on the MT (state 1), while on the right it
diffuses along the MT track (state 2). At the transition from state
1 to 2, KIF1A detaches from the MT.
Intracellular transport of a wide variety of cargo in
eucaryotic cells is made possible by motor proteins, like
kinesin and dynein, which move on filamentary tracks
called microtubules (MT) [1,2]. However, often a single
MT is used simultaneously by many motors and, in such
circumstances, the intermotor interactions cannot be
ignored. Fundamental understanding of these collective
physical phenomena may also expose the causes of
motor-related diseases (e.g., Alzheimer’s disease) [3],
thereby helping, possibly, also in their control and cure.
Some of the most recent theoretical models of interacting
molecular motors [4–7] utilize the similarities between
molecular motor traffic on MT and vehicular traffic on
highways [8] both of which can be modeled by appropriate
extensions of driven diffusive lattice gases [9,10]. In those
models the motor is represented by a self-driven particle
and the dynamics of the model is essentially an extension
of that of the asymmetric simple exclusion processes
(ASEP) [9,10] that includes Langmuir-like kinetics of
adsorption and desorption of the motors. In reality, a motor
protein is an enzyme whose mechanical movement is
loosely coupled with its biochemical cycle. In this Letter
we consider specifically the single-headed kinesin motor,
KIF1A [11–14]; the movement of a single KIF1A motor
has been modeled recently with a Brownian ratchet mecha-
nism [15,16]. In contrast to the earlier models [4–7] of
molecular motor traffic, which take into account only the
mutual interactions of the motors, our model explicitly
incorporates also the Brownian ratchet mechanism of in-
dividual KIF1A motors, including its biochemical cycle
that involves adenosine triphosphate (ATP) hydrolysis.

The ASEP-like models successfully explain the occur-
rence of shocks. But since most of the biochemistry is
captured in these models through a single effective hop-
ping rate, it is difficult to make direct quantitative com-
parison with experimental data which depend on such
chemical processes. In contrast, the model we propose
05=95(11)=118101(4)$23.00 11810
incorporates the essential steps in the biochemical pro-
cesses of KIF1A as well as their mutual interactions and
involves parameters that have one-to-one correspondence
with experimentally controllable quantities.

The biochemical processes of kinesin-type molecular
motors can be described by the four states model shown
in Fig. 1 [11,14]: bare kinesin (K), kinesin bound with ATP
(KT), kinesin bound with the products of hydrolysis, i.e.,
adenosine diphosphate (ADP) and phosphate (KDP), and,
finally, kinesin bound with ADP (KD) after releasing phos-
phate. Recent experiments [11,14] revealed that both K and
KT bind to the MT in a stereotypic manner (historically
called ‘‘strongly bound state,’’ and here we refer to this
mechanical state as ‘‘state 1’’). KDP has a very short
lifetime and the release of phosphate transiently detaches
kinesin from MT [14]. Then, KD rebinds to the MT and
executes Brownian motion along the track (historically
called ‘‘weakly bound state,’’ and here referred to as ‘‘state
2’’). Finally, KD releases ADP when it steps forward to the
next binding site on the MT utilizing a Brownian ratchet
mechanism, and thereby returns to the state K.

Model definition.—A single protofilament of MT is
modeled by a one-dimensional lattice of L sites, each of
which corresponds to one KIF1A-binding site on the MT;
the lattice spacing is equivalent to 8 nm which is the
separation between the successive binding sites on a MT
1-1 © 2005 The American Physical Society
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[1]. Each kinesin is represented by a particle with two
possible internal states labeled by the indices 1 and 2.
Attachment of a motor to the MT occurs stochastically
whenever a binding site on the latter is empty.
Attachment and detachment at the two ends of the lattice
need careful treatment and will be specified below. Thus,
each of the lattice sites can be in one of three possible
allowed states (Fig. 2): empty (denoted by 0), occupied by
a kinesin in state 1, or occupied by a kinesin in state 2.

For the dynamical evolution of the system, one of the L
sites is picked up randomly and updated according to the
rules given below together with the corresponding proba-
bilities (Fig. 2):

Attachment: 0! 1 with !adt (1)

Detachment: 1! 0 with !ddt (2)

Hydrolysis: 1! 2 with !hdt (3)

Ratchet:
�

2! 1 with !sdt
20! 01 with !fdt

(4)

Brownian motion:
�

20! 02 with !bdt
02! 20 with !bdt

: (5)

The probabilities of detachment and attachment at the
two ends of the MT may be different from those at any bulk
site. We choose � and �, instead of!a, as the probabilities
of attachment at the left and right ends, respectively.
Similarly, we take �1 and �1, instead of !d, as probabil-
ities of detachments at the two ends (Fig. 2). Finally, �2

and �2, instead of !b, are the probabilities of exit of the
motors through the two ends by random Brownian
movements.

Let us relate the rate constants !f, !s, and !b with the
corresponding physical processes in the Brownian ratchet
mechanism of a single KIF1A motor. Suppose, just like
models of flashing ratchets [15,16], the motor ‘‘sees’’ a
time-dependent effective potential which, over each bio-
chemical cycle, switches back and forth between (i) a
periodic but asymmetric sawtooth like form and (ii) a
constant. The rate constant !h in our model corresponds
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FIG. 2. A 3-state model for molecular motors moving along a
MT. 0 denotes an empty site, 1 is K or KT, and 2 is KD.
Transition from 1 to 2, corresponding to hydrolysis, occurs
within a site whereas movement to the forward or backward
site occurs only when motor is in state 2. At the minus and plus
ends the probabilities are different from those in the bulk.
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to the rate of the transition of the potential from the form (i)
to the form (ii). The transition from (i) to (ii) happens soon
after ATP hydrolysis, while the transition from (ii) to (i)
happens when ATP attaches to a bare kinesin [11]. The rate
constant !b of the motor in state 2 captures the Brownian
motion of the free particle subjected to the flat potential
(ii). The rate constants !s and !f are proportional to the
overlaps of the Gaussian probability distribution of the free
Brownian particle with, respectively, the original well and
the well immediately in front of the original well of the
sawtooth potential.

Let us denote the probabilities of finding a KIF1A
molecule in the states 1 and 2 at the lattice site i at time t
by the symbols ri and hi, respectively. In mean-field ap-
proximation the master equations for the dynamics of
motors in the bulk of the system are given by

dri
dt
� !a�1� ri � hi� �!hri �!dri �!shi

�!fhi�1�1� ri � hi�; (6)

dhi
dt
� �!shi �!hri �!fhi�1� ri�1 � hi�1�

�!bhi�2� ri�1 � hi�1 � ri�1 � hi�1�

�!b�hi�1 � hi�1��1� ri � hi�: (7)

The corresponding equations for the boundaries, which
depend on the rate constants �, �, �i, and �i for entry
and exit (Fig. 2), are similar and will be presented else-
where [13].

From experimental data [11,12], good estimates for the
parameters of the suggested model can be obtained.
Assuming that one time step corresponds to 1 ms, each
simulation run had a duration of 1 min in real time. The
length of MT is fixed as L � 600. The detachment rate
!d ’ 0:0001 ms�1 is found to be independent of the kine-
sin population. On the other hand, !a � 107C=M � s de-
pends on the concentration C (in M) of the kinesin motors.
In typical eucaryotic cells in vivo the kinesin concentration
can vary between 10 and 1000 nM. Therefore, the allowed
range of !a is 0:0001 ms�1 � !a � 0:01 ms�1. The rate
!�1
b must be such that the Brownian diffusion coefficient

D in state 2 is of the order of 40 000 nm2=s; using the
relation !b �D=�8 nm�2, we get !b ’ 0:6 ms�1.
Moreover, from the experimental observations that
!f=!s ’ 3=8 and !s �!f ’ 0:2 ms�1, we get the indi-
vidual estimates !s ’ 0:145 ms�1 and !f ’ 0:055 ms�1.
The experimental data on the Michaelis-Menten type ki-
netics of hydrolysis [1] suggest that

!�1
h ’

�
4� 9

�
0:1 mM

ATP concentration �in mM�

��
ms (8)

so that the allowed biologically relevant range of!h is 0 �
!h � 0:25 ms�1.

Single-molecule properties.—An important test for the
model is provided by a quantitative comparison of the low-
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TABLE I. Predicted transport properties from this model in the
low-density limit for four different ATP densities. � is calculated
by averaging the intervals between attachment and detachment
of each KIF1A.

ATP (mM) !h�1=ms� v �nm=ms� D=v (nm) � (s)

1 0.25 0.201 184.8 7.22
0.9 0.20 0.176 179.1 6.94
0.3375 0.15 0.153 188.2 6.98
0.15 0.10 0.124 178.7 6.62
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density properties with empirical results. Single-molecule
experiments [11] on KIF1A have established that (i) v, the
mean speed of the kinesins, is about 0:2 nm=ms if the
supply of ATP is sufficient, and that v decreases with the
lowering of ATP concentration following a Michaelis-
Menten type relation like (8); (ii) D=v� 190 nm, irre-
spective of the ATP concentration, whereD is the diffusion
constant; (iii) �, the mean duration of the movement of a
kinesin on the MT, is more than 5 s, irrespective of the ATP
concentration. The corresponding predictions of our model
(see Table I) for !a � � � 1:0	 10�6 ms�1, which al-
lows realization of the condition of low density of kinesins,
are in excellent agreement with the experimental results.

Collective properties.—Assuming periodic boundary
conditions, the solutions �ri; hi� � �r; h� of the mean-field
equations (7) in the steady-state are found to be

r �
��h ��s � ��s � 1�K �

����
D
p

2K�1� K�
; (9)

h �
�h ��s � ��s � 1�K �

����
D
p

2K
; (10)

where K � !d=!a, �h � !h=!f, �s � !s=!f, and

D � 4�sK�1� K� � ��h ��s � ��s � 1�K�2: (11)

The probability of finding an empty binding site on a MT is
Kr as the stationary solution satisfies the equation r� h�
Kr � 1. The steady-state flux of the motors along their MT
tracks is then given by J � !fh�1� r� h�. It is interest-
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FIG. 3 (color). The stationary density profiles for !h � 0:1 (left)
lines correspond to the densities of state 1 and 2, respectively. The da
systems with the same parameters.
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ing to note that in the low ATP concentration limit �!h 


!s ’ !f� of our model, the flux of the motors is well
approximated by Jlow � qeff��1� ��, which formally
looks like the corresponding expression for the totally
asymmetric exclusion process, where � is close to the
Langmuir limit 1=�1� K� and,

qeff �
!h�1� K�

�s�1� K� � K
(12)

as the effective hopping probability [13].
Although the system with periodic boundary conditions

is fictitious, the results provide good estimates of the
density and flux in the corresponding system with open
boundary conditions, particularly, in the high !a regime
(Fig. 3) which corresponds to jammed traffic of kinesin on
MT (see Fig. 4). We also see that, for a given !a, the bulk
density of motors in state 2 exceeds that of those in state 1
as !h increases beyond a certain value.

Phase diagram.—In contrast to the phase diagrams in
the �-� plane reported by earlier investigators [4–6], we
have drawn the phase diagram of our model (Fig. 4) in the
!a-!h plane by carrying out extensive computer simula-
tions for realistic parameter values of the model with open
boundary conditions. The phase diagram shows the strong
influence of hydrolysis on the spatial distribution of the
motors along the MT. For very low !h no kinesins can
exist in state 2; the kinesins, all of which are in state 1, are
distributed rather homogeneously over the entire system.
In this case the only dynamics present is due to the
Langmuir kinetics.

Even a small, but finite, rate !h is sufficient to change
this scenario. In this case both the density profiles �1

j and
�2
j of kinesins in the states 1 and 2 exhibit a shock. As in

the case of the ASEP-like models with Langmuir kinetics
[5,6], these shocks are localized. In computer simulations
we have observed that the shocks in density profiles of
kinesins in the states 1 and 2 always appear at the same
position. Note that if the individual density profiles �1

j and
�2
j exhibited shocks at two different locations, two shocks

would appear in the total density profile �j � �1
j � �

2
j

violating the usual arguments [17] that ASEP-type models
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and !h � 0:2 (right) in the case !a � 0:001. The blue and red
shed lines are the mean-field predictions (9) and (10) for periodic
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FIG. 5 (color). Formation of cometlike accumulation of kine-
sin at the end of MT. Fluorescently labeled KIF1A (red) was
introduced to MT (green) at 10 pM (top), 100 pM (middle), and
1000 pM (bottom) concentrations along with 2 mM ATP. The
length of the white bar is 2 �m.

]ms[ -1
hω

]ms[ -1
aω

0.01
(0.0094)

0.1
(0.15)

0.00001  (1) 0.001 (100)

0.2 
(0.9)

Blue: state_1
Red: state_2

])[mM(ATP

])nM[A1(KIF
0.00005 (5)

x

t

FIG. 4 (color). Phase diagram of the model in the !h-!a
plane, with the corresponding values for ATP and KIF1A con-
centrations given in brackets. These quantities are controllable in
experiment. The boundary rates are � � !a, �1;2 � !d, �1;2 �

� � 0. The position of the immobile shock depends on both ATP
and KIF1A concentrations.
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exhibit exactly one shock. Moreover, we have found that
the position of the immobile shock depends on the con-
centration of the motors as well as that of ATP; the shock
moves towards the minus end of the MT with the increase
of the concentration of kinesin or ATP or both (Fig. 4).

Finally, we present direct experimental evidence that
support the formation of the shock. The ‘‘cometlike struc-
ture,’’ shown in the middle of Fig. 5, is the collective
pattern formed by the red fluorescent labeled kinesins
where a domain wall separates the low-density region
from the high-density region. The position of the domain
wall depends on both ATP and KIF1A concentrations.
Moreover, as we increase the concentration of KIF1A,
the transition from the regime of free flow of kinesins to
the formation of the shock is observed (top and middle in
Fig. 5). Furthermore, we observe jammed traffic of kine-
sins at sufficiently high concentration (bottom in Fig. 5).
The position of the shock in our simulation agrees well
with the location of the domain wall in the cometlike
structure observed in experiments [13].

In this Letter we have developed a stochastic model for
the collective intracellular transport by KIF1A motors, by
taking into account the biochemical cycle of individual
motors involving ATP hydrolysis and their mutual steric
interactions. We have been able to identify the biologically
relevant ranges of values of all the model parameters from
the empirical data. In contrast to some earlier oversimpli-
fied models, the predictions of our model are in good
quantitative agreement with the corresponding experimen-
tal data. Moreover, we have mapped the phase diagram of
the model in a plane spanned by the concentrations of ATP
and KIF1A, both of which are experimentally controllable
quantities. Finally, we have reported the experimental ob-
servation of a cometlike collective pattern formed by the
11810
kinesin motors KIF1A and identified the domain wall in
the pattern with the shock predicted by our model.
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